Quadrature formulas based on rational interpolation

We consider quadrature formulas based on interpolation using the basis functions \(1/(1+t_kx)\) \((k=1,2,3,\ldots)\) on \([-1,1]\), where \(t_k\) are parameters on the interval \((-1,1)\). We investigate two types of quadratures: quadrature formulas of maximum accuracy which correctly integrate as m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 1993-07
Hauptverfasser: Walter Van Assche, Vanherwegen, Ingrid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider quadrature formulas based on interpolation using the basis functions \(1/(1+t_kx)\) \((k=1,2,3,\ldots)\) on \([-1,1]\), where \(t_k\) are parameters on the interval \((-1,1)\). We investigate two types of quadratures: quadrature formulas of maximum accuracy which correctly integrate as many basis functions as possible (Gaussian quadrature), and quadrature formulas whose nodes are the zeros of the orthogonal functions obtained by orthogonalizing the system of basis functions (orthogonal quadrature). We show that both approaches involve orthogonal polynomials with modified (or varying) weights which depend on the number of quadrature nodes. The asymptotic distribution of the nodes is obtained as well as various interlacing properties and monotonicity results for the nodes.
ISSN:2331-8422
DOI:10.48550/arxiv.9307221