Optical sorting and detection of sub-micron objects in a motional standing wave
An extended interference pattern close to surface may result in both a transmissive or evanescent surface fields for large area manipulation of trapped particles. The affinity of differing particle sizes to a moving standing wave light pattern allows us to hold and deliver them in a bi-directional m...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2005-09 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An extended interference pattern close to surface may result in both a transmissive or evanescent surface fields for large area manipulation of trapped particles. The affinity of differing particle sizes to a moving standing wave light pattern allows us to hold and deliver them in a bi-directional manner and importantly demonstrate experimentally particle sorting in the sub-micron region. This is performed without the need of fluid flow (static sorting). Theoretical calculations experimentally confirm that certain sizes of colloidal particles thermally hop more easily between neighboring traps. A new generic method is also presented for particle position detection in an extended periodic light pattern and applied to characterization of optical traps and particle behavior |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0509054 |