An inequality à la Szegő-Weinberger for the \(p-\)Laplacian on convex sets
In this paper we prove a sharp inequality of Szegő-Weinberger type for the first nontrivial eigenvalue of the \(p-\)Laplacian with Neumann boundary conditions. This applies to convex sets with given diameter. Some variants, extensions and limit cases are investigated as well.
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-08 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we prove a sharp inequality of Szegő-Weinberger type for the first nontrivial eigenvalue of the \(p-\)Laplacian with Neumann boundary conditions. This applies to convex sets with given diameter. Some variants, extensions and limit cases are investigated as well. |
---|---|
ISSN: | 2331-8422 |