Local Spectroscopic Characterization of Spin and Layer Polarization in WSe\(_2\)
We report scanning tunneling microscopy (STM) and spectroscopy (STS) measurements of monolayer and bilayer WSe\(_2\). We measure a band gap of 2.21 \(\pm\) 0.08 eV in monolayer WSe\(_2\), which is much larger than the energy of the photoluminescence peak indicating a large excitonic binding energy....
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report scanning tunneling microscopy (STM) and spectroscopy (STS) measurements of monolayer and bilayer WSe\(_2\). We measure a band gap of 2.21 \(\pm\) 0.08 eV in monolayer WSe\(_2\), which is much larger than the energy of the photoluminescence peak indicating a large excitonic binding energy. We additionally observe significant electronic scattering arising from atomic-scale defects. Using Fourier transform STS (FT-STS), we map the energy versus momentum dispersion relations for monolayer and bilayer WSe\(_2\). Further, by tracking allowed and forbidden scattering channels as a function of energy we infer the spin texture of both the conduction and valence bands. We observe a large spin-splitting of the valence band due to strong spin-orbit coupling, and additionally observe spin-valley-layer coupling in the conduction band of bilayer WSe\(_2\). |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1505.00245 |