Optimal Time-dependent Sequenced Route Queries in Road Networks

In this paper we present an algorithm for optimal processing of time-dependent sequenced route queries in road networks, i.e., given a road network where the travel time over an edge is time-dependent and a given ordered list of categories of interest, we find the fastest route between an origin and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-09
Hauptverfasser: Costa, Camila F, Nascimento, Mario A, Macedo, Jose A F, Theodoridis, Yannis, Pelekis, Nikos, Machado, Javam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we present an algorithm for optimal processing of time-dependent sequenced route queries in road networks, i.e., given a road network where the travel time over an edge is time-dependent and a given ordered list of categories of interest, we find the fastest route between an origin and destination that passes through a sequence of points of interest belonging to each of the specified categories of interest. For instance, considering a city road network at a given departure time, one can find the fastest route between one's work and his/her home, passing through a bank, a supermarket and a restaurant, in this order. The main contribution of our work is the consideration of the time dependency of the network, a realistic characteristic of urban road networks, which has not been considered previously when addressing the optimal sequenced route query. Our approach uses the A* search paradigm that is equipped with an admissible heuristic function, thus guaranteed to yield the optimal solution, along with a pruning scheme for further reducing the search space. In order to compare our proposal we extended a previously proposed solution aimed at non-time dependent sequenced route queries, enabling it to deal with the time-dependency. Our experiments using real and synthetic data sets have shown our proposed solution to be up to two orders of magnitude faster than the temporally extended previous solution.
ISSN:2331-8422