Evidence for Coexistence of Bulk Superconductivity and Itinerant Antiferromagnetism in the Heavy Fermion System CeCo(In\(_{1-x}\)Cd\(_x\))\(_5\)
In the generic phase diagram of heavy fermion systems, tuning an external parameter such as hydrostatic or chemical pressure modifies the superconducting transition temperature. The superconducting phase forms a dome in the temperature-tuning parameter phase diagram, which is associated with a maxim...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-09 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the generic phase diagram of heavy fermion systems, tuning an external parameter such as hydrostatic or chemical pressure modifies the superconducting transition temperature. The superconducting phase forms a dome in the temperature-tuning parameter phase diagram, which is associated with a maximum of the superconducting pairing interaction. Proximity to antiferromagnetism suggests a relation between the disappearance of antiferromagnetic order and superconductivity. We combine muon spin rotation, neutron scattering, and x-ray absorption spectroscopy techniques to gain access to the magnetic and electronic structure of CeCo(In\(_{1-x}\)Cd\(_x\))\(_5\) at different time scales. Different magnetic structures are obtained that indicate a magnetic order of itinerant character, coexisting with bulk superconductivity. The suppression of the antiferromagnetic order appears to be driven by a modification of the bandwidth/carrier concentration, implying that the electronic structure and consequently the interplay of superconductivity and magnetism is strongly affected by hydrostatic and chemical pressure. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1509.00633 |