Existence and multiplicity results on a class of quasilinear elliptic problems with cylindrical singularities involving multiple critical exponents

This work deals with the existence of at least two positive solutions for the class of quasilinear elliptic equations with cylindrical singularities and multiple critical nonlinearities that can be written in the form \begin{align*} -\operatorname{div}\left[\frac{|\nabla u|^{p-2}}{|y|^{ap}}\nabla u\...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-06
Hauptverfasser: Assunção, Ronaldo B, dos Santos, Weler W, Miyagaki, Olímpio H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work deals with the existence of at least two positive solutions for the class of quasilinear elliptic equations with cylindrical singularities and multiple critical nonlinearities that can be written in the form \begin{align*} -\operatorname{div}\left[\frac{|\nabla u|^{p-2}}{|y|^{ap}}\nabla u\right] -\mu\,\frac{u^{p-1}}{|y|^{p(a+1)}} = h\,\frac{u^{p^*(a,b)-1}}{|y|^{bp^*(a,b)}} +\lambda g\,\frac{u^{q-1}}{|y|^{cp^*(a,c)}}, \qquad (x,y) \in \mathbb{R}^{N-k}\times\mathbb{R}^k. \end{align*} We consider \(N \geqslant 3\), \(\lambda >0\), \(p < k \leqslant N\), \(1
ISSN:2331-8422