Optimal pinching for the holomorphic sectional curvature of Hitchin's metrics on Hirzebruch surfaces
The main result of this note is that, for each \(n\in \{1,2,3,\ldots\}\), there exists a Hodge metric on the \(n\)-th Hirzebruch surface whose positive holomorphic sectional curvature is \(\frac{1}{(1+2n)^2}\)-pinched. The type of metric under consideration was first studied by Hitchin in this conte...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main result of this note is that, for each \(n\in \{1,2,3,\ldots\}\), there exists a Hodge metric on the \(n\)-th Hirzebruch surface whose positive holomorphic sectional curvature is \(\frac{1}{(1+2n)^2}\)-pinched. The type of metric under consideration was first studied by Hitchin in this context. In order to address the case \(n=0\), we prove a general result on the pinching of the holomorphic sectional curvature of the product metric on the product of two Hermitian manifolds \(M\) and \(N\) of positive holomorphic sectional curvature. |
---|---|
ISSN: | 2331-8422 |