Arithmetic and intermediate Jacobians of some rigid Calabi-Yau threefolds

We construct Calabi-Yau threefolds defined over \(\mathbb{Q}\) via quotients of abelian threefolds, and re-verify the rigid Calabi-Yau threefolds in this construction are modular by computing their L-series, without \cite{Dieulefait} or \cite{GouveaYui}. We compute the intermediate Jacobians of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-06
1. Verfasser: Molnar, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct Calabi-Yau threefolds defined over \(\mathbb{Q}\) via quotients of abelian threefolds, and re-verify the rigid Calabi-Yau threefolds in this construction are modular by computing their L-series, without \cite{Dieulefait} or \cite{GouveaYui}. We compute the intermediate Jacobians of the rigid Calabi-Yau threefolds as complex tori, then compute a \(\mathbb{Q}\)-model for the 1-torus given a \(\mathbb{Q}\)-structure on the rigid Calabi-Yau threefolds, and find infinitely many examples and counterexamples for a conjecture of Yui about the relation between the \(L\)-series of the rigid Calabi-Yau threefolds and the \(L\)-series of their intermediate Jacobians.
ISSN:2331-8422