A Transfer Principle for the Continuations of Real Functions to the Levi-Civita Field
We discuss the properties of the continuations of real functions to the Levi-Civita field. In particular, we show that, whenever a function f is analytic on a compact interval [ a , b ] ⊂ ℝ, f and its analytic continuation f̅ ∞ satisfy the same properties that can be expressed in the language of rea...
Gespeichert in:
Veröffentlicht in: | P-adic numbers, ultrametric analysis, and applications ultrametric analysis, and applications, 2018-07, Vol.10 (3), p.179-191 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 191 |
---|---|
container_issue | 3 |
container_start_page | 179 |
container_title | P-adic numbers, ultrametric analysis, and applications |
container_volume | 10 |
creator | Bottazzi, Emanuele |
description | We discuss the properties of the continuations of real functions to the Levi-Civita field. In particular, we show that, whenever a function
f
is analytic on a compact interval [
a
,
b
] ⊂ ℝ,
f
and its analytic continuation
f̅
∞
satisfy the same properties that can be expressed in the language of real closed ordered fields. If
f
is not analytic, then this equivalence does not hold. These results suggest an analogy with the internal and external functions of nonstandard analysis: while the canonical continuations of analytic functions resemble internal functions, the continuations of non-analytic functions behave like external functions. Inspired by this analogy, we suggest some directions for further research. |
doi_str_mv | 10.1134/S2070046618030032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2082709032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2082709032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-32d1776d02febef7006fbbc07eb99daa0809cc78ad2e7bad6043c7a83111610b3</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouKz7A7wFPFcnSU3a41JcFQqK7p5LmiaapSZrki747-1a0YN4mmH43hveQ-icwCUhLL96piAAcs5JAQyA0SM0O5wyyEV-_LNzfooWMW4BDoworukMbZZ4HaSLRgf8GKxTdtdrbHzA6VXjyrtk3SCT9S5ib_CTlj1eDU5Nl-S_sFrvbVbZvU0Sr6zuuzN0YmQf9eJ7ztFmdbOu7rL64fa-WtaZYoSnjNGOCME7oEa32owZuGlbBUK3ZdlJCQWUSolCdlSLVnYccqaELBghhBNo2RxdTL674N8HHVOz9UNw48uGQkEFlGPQkSITpYKPMWjT7IJ9k-GjIdAcCmz-FDhq6KSJI-tedPh1_l_0CU81cLo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082709032</pqid></control><display><type>article</type><title>A Transfer Principle for the Continuations of Real Functions to the Levi-Civita Field</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bottazzi, Emanuele</creator><creatorcontrib>Bottazzi, Emanuele</creatorcontrib><description>We discuss the properties of the continuations of real functions to the Levi-Civita field. In particular, we show that, whenever a function
f
is analytic on a compact interval [
a
,
b
] ⊂ ℝ,
f
and its analytic continuation
f̅
∞
satisfy the same properties that can be expressed in the language of real closed ordered fields. If
f
is not analytic, then this equivalence does not hold. These results suggest an analogy with the internal and external functions of nonstandard analysis: while the canonical continuations of analytic functions resemble internal functions, the continuations of non-analytic functions behave like external functions. Inspired by this analogy, we suggest some directions for further research.</description><identifier>ISSN: 2070-0466</identifier><identifier>EISSN: 2070-0474</identifier><identifier>DOI: 10.1134/S2070046618030032</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analytic functions ; Mathematical analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>P-adic numbers, ultrametric analysis, and applications, 2018-07, Vol.10 (3), p.179-191</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-32d1776d02febef7006fbbc07eb99daa0809cc78ad2e7bad6043c7a83111610b3</citedby><cites>FETCH-LOGICAL-c316t-32d1776d02febef7006fbbc07eb99daa0809cc78ad2e7bad6043c7a83111610b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S2070046618030032$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S2070046618030032$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Bottazzi, Emanuele</creatorcontrib><title>A Transfer Principle for the Continuations of Real Functions to the Levi-Civita Field</title><title>P-adic numbers, ultrametric analysis, and applications</title><addtitle>P-Adic Num Ultrametr Anal Appl</addtitle><description>We discuss the properties of the continuations of real functions to the Levi-Civita field. In particular, we show that, whenever a function
f
is analytic on a compact interval [
a
,
b
] ⊂ ℝ,
f
and its analytic continuation
f̅
∞
satisfy the same properties that can be expressed in the language of real closed ordered fields. If
f
is not analytic, then this equivalence does not hold. These results suggest an analogy with the internal and external functions of nonstandard analysis: while the canonical continuations of analytic functions resemble internal functions, the continuations of non-analytic functions behave like external functions. Inspired by this analogy, we suggest some directions for further research.</description><subject>Algebra</subject><subject>Analytic functions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>2070-0466</issn><issn>2070-0474</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQhYMouKz7A7wFPFcnSU3a41JcFQqK7p5LmiaapSZrki747-1a0YN4mmH43hveQ-icwCUhLL96piAAcs5JAQyA0SM0O5wyyEV-_LNzfooWMW4BDoworukMbZZ4HaSLRgf8GKxTdtdrbHzA6VXjyrtk3SCT9S5ib_CTlj1eDU5Nl-S_sFrvbVbZvU0Sr6zuuzN0YmQf9eJ7ztFmdbOu7rL64fa-WtaZYoSnjNGOCME7oEa32owZuGlbBUK3ZdlJCQWUSolCdlSLVnYccqaELBghhBNo2RxdTL674N8HHVOz9UNw48uGQkEFlGPQkSITpYKPMWjT7IJ9k-GjIdAcCmz-FDhq6KSJI-tedPh1_l_0CU81cLo</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Bottazzi, Emanuele</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180701</creationdate><title>A Transfer Principle for the Continuations of Real Functions to the Levi-Civita Field</title><author>Bottazzi, Emanuele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-32d1776d02febef7006fbbc07eb99daa0809cc78ad2e7bad6043c7a83111610b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Analytic functions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bottazzi, Emanuele</creatorcontrib><collection>CrossRef</collection><jtitle>P-adic numbers, ultrametric analysis, and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bottazzi, Emanuele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Transfer Principle for the Continuations of Real Functions to the Levi-Civita Field</atitle><jtitle>P-adic numbers, ultrametric analysis, and applications</jtitle><stitle>P-Adic Num Ultrametr Anal Appl</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>10</volume><issue>3</issue><spage>179</spage><epage>191</epage><pages>179-191</pages><issn>2070-0466</issn><eissn>2070-0474</eissn><abstract>We discuss the properties of the continuations of real functions to the Levi-Civita field. In particular, we show that, whenever a function
f
is analytic on a compact interval [
a
,
b
] ⊂ ℝ,
f
and its analytic continuation
f̅
∞
satisfy the same properties that can be expressed in the language of real closed ordered fields. If
f
is not analytic, then this equivalence does not hold. These results suggest an analogy with the internal and external functions of nonstandard analysis: while the canonical continuations of analytic functions resemble internal functions, the continuations of non-analytic functions behave like external functions. Inspired by this analogy, we suggest some directions for further research.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S2070046618030032</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2070-0466 |
ispartof | P-adic numbers, ultrametric analysis, and applications, 2018-07, Vol.10 (3), p.179-191 |
issn | 2070-0466 2070-0474 |
language | eng |
recordid | cdi_proquest_journals_2082709032 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Analytic functions Mathematical analysis Mathematics Mathematics and Statistics |
title | A Transfer Principle for the Continuations of Real Functions to the Levi-Civita Field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T00%3A12%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Transfer%20Principle%20for%20the%20Continuations%20of%20Real%20Functions%20to%20the%20Levi-Civita%20Field&rft.jtitle=P-adic%20numbers,%20ultrametric%20analysis,%20and%20applications&rft.au=Bottazzi,%20Emanuele&rft.date=2018-07-01&rft.volume=10&rft.issue=3&rft.spage=179&rft.epage=191&rft.pages=179-191&rft.issn=2070-0466&rft.eissn=2070-0474&rft_id=info:doi/10.1134/S2070046618030032&rft_dat=%3Cproquest_cross%3E2082709032%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2082709032&rft_id=info:pmid/&rfr_iscdi=true |