A Transfer Principle for the Continuations of Real Functions to the Levi-Civita Field
We discuss the properties of the continuations of real functions to the Levi-Civita field. In particular, we show that, whenever a function f is analytic on a compact interval [ a , b ] ⊂ ℝ, f and its analytic continuation f̅ ∞ satisfy the same properties that can be expressed in the language of rea...
Gespeichert in:
Veröffentlicht in: | P-adic numbers, ultrametric analysis, and applications ultrametric analysis, and applications, 2018-07, Vol.10 (3), p.179-191 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We discuss the properties of the continuations of real functions to the Levi-Civita field. In particular, we show that, whenever a function
f
is analytic on a compact interval [
a
,
b
] ⊂ ℝ,
f
and its analytic continuation
f̅
∞
satisfy the same properties that can be expressed in the language of real closed ordered fields. If
f
is not analytic, then this equivalence does not hold. These results suggest an analogy with the internal and external functions of nonstandard analysis: while the canonical continuations of analytic functions resemble internal functions, the continuations of non-analytic functions behave like external functions. Inspired by this analogy, we suggest some directions for further research. |
---|---|
ISSN: | 2070-0466 2070-0474 |
DOI: | 10.1134/S2070046618030032 |