A Transfer Principle for the Continuations of Real Functions to the Levi-Civita Field

We discuss the properties of the continuations of real functions to the Levi-Civita field. In particular, we show that, whenever a function f is analytic on a compact interval [ a , b ] ⊂ ℝ, f and its analytic continuation f̅ ∞ satisfy the same properties that can be expressed in the language of rea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:P-adic numbers, ultrametric analysis, and applications ultrametric analysis, and applications, 2018-07, Vol.10 (3), p.179-191
1. Verfasser: Bottazzi, Emanuele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We discuss the properties of the continuations of real functions to the Levi-Civita field. In particular, we show that, whenever a function f is analytic on a compact interval [ a , b ] ⊂ ℝ, f and its analytic continuation f̅ ∞ satisfy the same properties that can be expressed in the language of real closed ordered fields. If f is not analytic, then this equivalence does not hold. These results suggest an analogy with the internal and external functions of nonstandard analysis: while the canonical continuations of analytic functions resemble internal functions, the continuations of non-analytic functions behave like external functions. Inspired by this analogy, we suggest some directions for further research.
ISSN:2070-0466
2070-0474
DOI:10.1134/S2070046618030032