On holomorphic theta functions associated to rank \(r\) isotropic discrete subgroups of a \(g\)-dimensional complex space

We are interested in the \(L^2\)-holomorphic automorphic functions on a \(g\)-dimensional complex space \(V^g_{\mathbb{C}}\) endowed with a positive definite hermitian form and associated to isotropic discrete subgroups \(\Gamma\) of rank \(2\leq r \leq g\). We show that they form an infinite reprod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-06
Hauptverfasser: Ghanmi, Allal, Intissar, Ahmed, Mohammed Souid El Ainin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We are interested in the \(L^2\)-holomorphic automorphic functions on a \(g\)-dimensional complex space \(V^g_{\mathbb{C}}\) endowed with a positive definite hermitian form and associated to isotropic discrete subgroups \(\Gamma\) of rank \(2\leq r \leq g\). We show that they form an infinite reproducing kernel Hilbert space which looks like a tensor product of a theta Fock-Bargmann space on \(V^{r}_{\mathbb{C}}=Span_{\mathbb{C}}(\Gamma)\) and the classical Fock-Bargmann space on \(V^{g-r}_{\mathbb{C}}\). Moreover, we provide an explicit orthonormal basis using Fourier series and we give the expression of its reproducing kernel function in terms of Riemann theta function of several variables with special characteristics.
ISSN:2331-8422