Cluster Detection in Astronomical Databases: the Adaptive Matched Filter Algorithm and Implementation

Clusters of galaxies are the most massive objects in the Universe and mapping their location is an important astronomical problem. This paper describes an algorithm (based on statistical signal processing methods), a software architecture (based on a hybrid layered approach) and a parallelization sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2000-04
Hauptverfasser: Kepner, Jeremy, Kim, Rita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Clusters of galaxies are the most massive objects in the Universe and mapping their location is an important astronomical problem. This paper describes an algorithm (based on statistical signal processing methods), a software architecture (based on a hybrid layered approach) and a parallelization scheme (based on a client/server model) for finding clusters of galaxies in large astronomical databases. The Adaptive Matched Filter (AMF) algorithm presented here identifies clusters by finding the peaks in a cluster likelihood map generated by convolving a galaxy survey with a filter based on a cluster model and a background model. The method has proved successful in identifying clusters in real and simulated data. The implementation is flexible and readily executed in parallel on a network of workstations.
ISSN:2331-8422
DOI:10.48550/arxiv.0004304