Visual boundaries of Diestel-Leader graphs
Diestel-Leader graphs are neither hyperbolic nor CAT(0), so their visual boundaries may be pathological. Indeed, we show that for \(d>2\), \(\partial\text{DL}_d(q)\) carries the indiscrete topology. On the other hand, \(\partial\text{DL}_2(q)\), while not Hausdorff, is \(T_1\), totally disconnect...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-05 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!