Visual boundaries of Diestel-Leader graphs

Diestel-Leader graphs are neither hyperbolic nor CAT(0), so their visual boundaries may be pathological. Indeed, we show that for \(d>2\), \(\partial\text{DL}_d(q)\) carries the indiscrete topology. On the other hand, \(\partial\text{DL}_2(q)\), while not Hausdorff, is \(T_1\), totally disconnect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-05
Hauptverfasser: Jones, Keith, Kelsey, Gregory A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diestel-Leader graphs are neither hyperbolic nor CAT(0), so their visual boundaries may be pathological. Indeed, we show that for \(d>2\), \(\partial\text{DL}_d(q)\) carries the indiscrete topology. On the other hand, \(\partial\text{DL}_2(q)\), while not Hausdorff, is \(T_1\), totally disconnected, and compact. Since \(\text{DL}_2(q)\) is a Cayley graph of the lamplighter group \(L_q\), we also obtain a nice description of \(\partial\text{DL}_2(q)\) in terms of the lamp stand model of \(L_q\) and discuss the dynamics of the action.
ISSN:2331-8422