Visual boundaries of Diestel-Leader graphs

Diestel-Leader graphs are neither hyperbolic nor CAT(0), so their visual boundaries may be pathological. Indeed, we show that for \(d>2\), \(\partial\text{DL}_d(q)\) carries the indiscrete topology. On the other hand, \(\partial\text{DL}_2(q)\), while not Hausdorff, is \(T_1\), totally disconnect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-05
Hauptverfasser: Jones, Keith, Kelsey, Gregory A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jones, Keith
Kelsey, Gregory A
description Diestel-Leader graphs are neither hyperbolic nor CAT(0), so their visual boundaries may be pathological. Indeed, we show that for \(d>2\), \(\partial\text{DL}_d(q)\) carries the indiscrete topology. On the other hand, \(\partial\text{DL}_2(q)\), while not Hausdorff, is \(T_1\), totally disconnected, and compact. Since \(\text{DL}_2(q)\) is a Cayley graph of the lamplighter group \(L_q\), we also obtain a nice description of \(\partial\text{DL}_2(q)\) in terms of the lamp stand model of \(L_q\) and discuss the dynamics of the action.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2082605110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2082605110</sourcerecordid><originalsourceid>FETCH-proquest_journals_20826051103</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCsssLk3MUUjKL81LSSzKTC1WyE9TcAHSJak5uj6piSmpRQrpRYkFGcU8DKxpiTnFqbxQmptB2c01xNlDt6Aov7AUqCE-K7-0KA8oFW9kYGFkZmBqaGhgTJwqAAfRMJ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082605110</pqid></control><display><type>article</type><title>Visual boundaries of Diestel-Leader graphs</title><source>Freely Accessible Journals</source><creator>Jones, Keith ; Kelsey, Gregory A</creator><creatorcontrib>Jones, Keith ; Kelsey, Gregory A</creatorcontrib><description>Diestel-Leader graphs are neither hyperbolic nor CAT(0), so their visual boundaries may be pathological. Indeed, we show that for \(d&gt;2\), \(\partial\text{DL}_d(q)\) carries the indiscrete topology. On the other hand, \(\partial\text{DL}_2(q)\), while not Hausdorff, is \(T_1\), totally disconnected, and compact. Since \(\text{DL}_2(q)\) is a Cayley graph of the lamplighter group \(L_q\), we also obtain a nice description of \(\partial\text{DL}_2(q)\) in terms of the lamp stand model of \(L_q\) and discuss the dynamics of the action.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundaries ; Graphs ; Topology</subject><ispartof>arXiv.org, 2015-05</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Jones, Keith</creatorcontrib><creatorcontrib>Kelsey, Gregory A</creatorcontrib><title>Visual boundaries of Diestel-Leader graphs</title><title>arXiv.org</title><description>Diestel-Leader graphs are neither hyperbolic nor CAT(0), so their visual boundaries may be pathological. Indeed, we show that for \(d&gt;2\), \(\partial\text{DL}_d(q)\) carries the indiscrete topology. On the other hand, \(\partial\text{DL}_2(q)\), while not Hausdorff, is \(T_1\), totally disconnected, and compact. Since \(\text{DL}_2(q)\) is a Cayley graph of the lamplighter group \(L_q\), we also obtain a nice description of \(\partial\text{DL}_2(q)\) in terms of the lamp stand model of \(L_q\) and discuss the dynamics of the action.</description><subject>Boundaries</subject><subject>Graphs</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCsssLk3MUUjKL81LSSzKTC1WyE9TcAHSJak5uj6piSmpRQrpRYkFGcU8DKxpiTnFqbxQmptB2c01xNlDt6Aov7AUqCE-K7-0KA8oFW9kYGFkZmBqaGhgTJwqAAfRMJ8</recordid><startdate>20150528</startdate><enddate>20150528</enddate><creator>Jones, Keith</creator><creator>Kelsey, Gregory A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150528</creationdate><title>Visual boundaries of Diestel-Leader graphs</title><author>Jones, Keith ; Kelsey, Gregory A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20826051103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boundaries</topic><topic>Graphs</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Jones, Keith</creatorcontrib><creatorcontrib>Kelsey, Gregory A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Keith</au><au>Kelsey, Gregory A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Visual boundaries of Diestel-Leader graphs</atitle><jtitle>arXiv.org</jtitle><date>2015-05-28</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>Diestel-Leader graphs are neither hyperbolic nor CAT(0), so their visual boundaries may be pathological. Indeed, we show that for \(d&gt;2\), \(\partial\text{DL}_d(q)\) carries the indiscrete topology. On the other hand, \(\partial\text{DL}_2(q)\), while not Hausdorff, is \(T_1\), totally disconnected, and compact. Since \(\text{DL}_2(q)\) is a Cayley graph of the lamplighter group \(L_q\), we also obtain a nice description of \(\partial\text{DL}_2(q)\) in terms of the lamp stand model of \(L_q\) and discuss the dynamics of the action.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2082605110
source Freely Accessible Journals
subjects Boundaries
Graphs
Topology
title Visual boundaries of Diestel-Leader graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A25%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Visual%20boundaries%20of%20Diestel-Leader%20graphs&rft.jtitle=arXiv.org&rft.au=Jones,%20Keith&rft.date=2015-05-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2082605110%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2082605110&rft_id=info:pmid/&rfr_iscdi=true