Automated steering controller design for vehicle lane keeping combining linear active disturbance rejection control and quantitative feedback theory
In this article, a new automated steering control method is presented for vehicle lane keeping. This method is a combination between the linear active disturbance rejection control and the quantitative feedback theory. The structure of the steering controller is first determined based on the linear...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering Journal of systems and control engineering, 2018-08, Vol.232 (7), p.937-948 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, a new automated steering control method is presented for vehicle lane keeping. This method is a combination between the linear active disturbance rejection control and the quantitative feedback theory. The structure of the steering controller is first determined based on the linear active disturbance rejection control, then the controller is tuned in the framework of the quantitative feedback theory to meet the prescribed design specifications on sensitivity and closed-loop stability. The parameter uncertainties of the vehicle system are considered at the tuning stage. The proposed steering controller is simulated and tested on a scale vehicle. Both the simulation and experimental results demonstrate that the scale vehicle controlled by the proposed controller is able to perform the lane keeping. In the experiments, the lateral offset between the scale vehicle and the road centerline is regulated within the acceptable ranges of ±0.03 m during straight lane keeping and ±0.15 m during curved lane keeping. The proposed controller is easy to be implemented and is simple without requiring complex calculations and measurements of vehicle states. Simulations also show that the control method can be implemented on a full-scale vehicle. |
---|---|
ISSN: | 0959-6518 2041-3041 |
DOI: | 10.1177/0959651818770344 |