Global well-posedness of the 3D non-isothermal compressible fluid model of Korteweg type

The aim of this work is to study the global existence and large-time behavior of solutions to the non-isothermal model of capillary compressible fluids derived by Dunn and Serrin (1985). It is proved that the three-dimensional non-isothermal compressible Navier–Stokes–Korteweg system admits a unique...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis: real world applications 2018-10, Vol.43, p.18-53
Hauptverfasser: Hou, Xiaofeng, Peng, Hongyun, Zhu, Changjiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this work is to study the global existence and large-time behavior of solutions to the non-isothermal model of capillary compressible fluids derived by Dunn and Serrin (1985). It is proved that the three-dimensional non-isothermal compressible Navier–Stokes–Korteweg system admits a unique global classical solution, provided that the initial energy is suitably small. This result improves previous results obtained by Hattori and Li (1996), where the existence of global classical solutions is established for the initial data close to an equilibrium in some Sobolev space Hs(s≥3). Furthermore, the large time behavior of the solution is also investigated.
ISSN:1468-1218
1878-5719
DOI:10.1016/j.nonrwa.2018.02.002