Global well-posedness of the 3D non-isothermal compressible fluid model of Korteweg type
The aim of this work is to study the global existence and large-time behavior of solutions to the non-isothermal model of capillary compressible fluids derived by Dunn and Serrin (1985). It is proved that the three-dimensional non-isothermal compressible Navier–Stokes–Korteweg system admits a unique...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis: real world applications 2018-10, Vol.43, p.18-53 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this work is to study the global existence and large-time behavior of solutions to the non-isothermal model of capillary compressible fluids derived by Dunn and Serrin (1985). It is proved that the three-dimensional non-isothermal compressible Navier–Stokes–Korteweg system admits a unique global classical solution, provided that the initial energy is suitably small. This result improves previous results obtained by Hattori and Li (1996), where the existence of global classical solutions is established for the initial data close to an equilibrium in some Sobolev space Hs(s≥3). Furthermore, the large time behavior of the solution is also investigated. |
---|---|
ISSN: | 1468-1218 1878-5719 |
DOI: | 10.1016/j.nonrwa.2018.02.002 |