Coarse Ricci curvature as a function on \(M\times M\)
We use the framework used by Bakry and Emery in their work on logarithmic Sobolev inequalities to define a notion of coarse Ricci curvature on smooth metric measure spaces alternative to the notion proposed by Y. Ollivier. This function can be used to recover the Ricci tensor on smooth Riemannian ma...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-05 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use the framework used by Bakry and Emery in their work on logarithmic Sobolev inequalities to define a notion of coarse Ricci curvature on smooth metric measure spaces alternative to the notion proposed by Y. Ollivier. This function can be used to recover the Ricci tensor on smooth Riemannian manifolds by the formula $$ \mathrm{Ric}(\gamma^{\prime}\left( 0\right) ,\gamma^{\prime}\left( 0\right) )=\frac{1}{2}\frac{d^{2}}{ds^{2}}\mathrm{Ric}_{\Delta_g}(x,\gamma\left( s\right) )$$ for any curve \(\gamma(s).\) |
---|---|
ISSN: | 2331-8422 |