On projectively flat Finsler spaces
First we present a short overview of the long history of projectively flat Finsler spaces. We give a simple and quite elementary proof of the already known condition for the projective flatness, and we give a criterion for the projective flatness of a special Lagrange space (Theorem 1). After this w...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-05 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | First we present a short overview of the long history of projectively flat Finsler spaces. We give a simple and quite elementary proof of the already known condition for the projective flatness, and we give a criterion for the projective flatness of a special Lagrange space (Theorem 1). After this we obtain a second-order PDE system, whose solvability is necessary and sufficient for a Finsler space to be projectively flat (Theorem 2). We also derive a condition in order that an infinitesimal transformation takes geodesics of a Finsler space into geodesics. This yields a Killing type vector field (Theorem 3). In the last section we present a characterization of the Finsler spaces which are projectively flat in a parameter-preserving manner (Theorem 4), and we show that these spaces over \(\mathbb R^n\) are exactly the Minkowski spaces (Theorems 5 and 6). |
---|---|
ISSN: | 2331-8422 |