Each 2n-by-2n complex symplectic matrix is a product of n+1 commutators of J-symmetries
A 2n×2n complex matrix A is symplectic if A⊤[0I−I0]A=[0I−I0]. If A is symplectic and rank(A−I)=1, then it is called a J-symmetry. For each n, we prove that every 2n×2n symplectic matrix M is a product of n+1 commutators of J-symmetries and this number cannot be smaller for some M.
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2017-03, Vol.517, p.53-62 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A 2n×2n complex matrix A is symplectic if A⊤[0I−I0]A=[0I−I0]. If A is symplectic and rank(A−I)=1, then it is called a J-symmetry. For each n, we prove that every 2n×2n symplectic matrix M is a product of n+1 commutators of J-symmetries and this number cannot be smaller for some M. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2016.12.006 |