Sign patterns requiring a unique inertia
A sign pattern requires a unique inertia if every real matrix in the sign pattern class has the same inertia. Several sufficient or necessary conditions are given for a sign pattern to require a unique inertia. It is proved that a sign pattern requires a unique inertia if and only if it requires a u...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2018-06, Vol.546, p.67-85 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A sign pattern requires a unique inertia if every real matrix in the sign pattern class has the same inertia. Several sufficient or necessary conditions are given for a sign pattern to require a unique inertia. It is proved that a sign pattern requires a unique inertia if and only if it requires a unique refined inertia. All sign patterns of orders 2 and 3 that require a unique inertia are characterized. If the underlying graph of a sign pattern is a tree, then it is shown that any skew-symmetric sign pattern requires a unique inertia, and a linear-time algorithm is given to determine whether or not a symmetric sign pattern requires a unique inertia. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2018.01.031 |