Primal-dual potential reduction algorithm for symmetric programming problems with nonlinear objective functions
We consider a primal-dual potential reduction algorithm for nonlinear convex optimization problems over symmetric cones. The same complexity estimates as in the case of the linear objective function are obtained provided a certain nonlinear system of equations can be solved with a given accuracy. Th...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2018-01, Vol.536, p.228-249 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a primal-dual potential reduction algorithm for nonlinear convex optimization problems over symmetric cones. The same complexity estimates as in the case of the linear objective function are obtained provided a certain nonlinear system of equations can be solved with a given accuracy. This generalizes the result of K. Kortanek, F. Potra and Y. Ye [7]. We further introduce a generalized Nesterov–Todd direction and show how it can be used to achieve a required accuracy (by solving the linearization of above mentioned nonlinear system) for a class of nonlinear convex functions satisfying scaling Lipschitz condition. This result is a far-reaching generalization of results of F. Potra, Y. Ye and J. Zhu [8], [9]. Finally, we show that a class of functions (which contains quantum entropy function) satisfies scaling Lipschitz condition. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2017.09.017 |