Neighborhood radius estimation for Arnold's miniversal deformations of complex and p-adic matrices
V.I. Arnold (1971) constructed a simple normal form to which all complex matrices B in a neighborhood U of a given square matrix A can be reduced by similarity transformations that smoothly depend on the entries of B. We calculate the radius of the neighborhood U. A.A. Mailybaev (1999, 2001) constru...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2017-01, Vol.512, p.97-112 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | V.I. Arnold (1971) constructed a simple normal form to which all complex matrices B in a neighborhood U of a given square matrix A can be reduced by similarity transformations that smoothly depend on the entries of B. We calculate the radius of the neighborhood U. A.A. Mailybaev (1999, 2001) constructed a reducing similarity transformation in the form of Taylor series; we construct this transformation by another method. We extend Arnold's normal form to matrices over the field Qp of p-adic numbers and the field F((T)) of Laurent series over a field F. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2016.09.026 |