Neighborhood radius estimation for Arnold's miniversal deformations of complex and p-adic matrices

V.I. Arnold (1971) constructed a simple normal form to which all complex matrices B in a neighborhood U of a given square matrix A can be reduced by similarity transformations that smoothly depend on the entries of B. We calculate the radius of the neighborhood U. A.A. Mailybaev (1999, 2001) constru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2017-01, Vol.512, p.97-112
Hauptverfasser: Bovdi, Victor A., Salim, Mohammed A., Sergeichuk, Vladimir V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:V.I. Arnold (1971) constructed a simple normal form to which all complex matrices B in a neighborhood U of a given square matrix A can be reduced by similarity transformations that smoothly depend on the entries of B. We calculate the radius of the neighborhood U. A.A. Mailybaev (1999, 2001) constructed a reducing similarity transformation in the form of Taylor series; we construct this transformation by another method. We extend Arnold's normal form to matrices over the field Qp of p-adic numbers and the field F((T)) of Laurent series over a field F.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2016.09.026