On quaternionic numerical ranges with respect to nonstandard involutions
Let ϕ be a nonstandard involution on the set of all quaternions, and the quaternion α be such that ϕ(α)=α. The notion of numerical range of an n×n quaternion matrix A with respect to ϕ was introduced by Leiba Rodman (2014) [8] asWϕ(α)(A)={xϕAx:x is an n×1 quaternion vector andxϕx=α}, where for x=[x1...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2018-03, Vol.540, p.11-25 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let ϕ be a nonstandard involution on the set of all quaternions, and the quaternion α be such that ϕ(α)=α. The notion of numerical range of an n×n quaternion matrix A with respect to ϕ was introduced by Leiba Rodman (2014) [8] asWϕ(α)(A)={xϕAx:x is an n×1 quaternion vector andxϕx=α}, where for x=[x1⋯xn]T, xϕ=[ϕ(x1)⋯ϕ(xn)]. In this paper, some algebraic and geometrical properties of Wϕ(0)(.) for every arbitrary quaternion matrix are investigated. Moreover, a description of this set is given for 2×2 quaternion matrices, and Wϕ(0)(.) is characterized for ϕ-hermitian and ϕ-skewhermitian quaternion matrices. To illustrate the main results, some examples are also given. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2017.11.013 |