The number of P-vertices in a matrix with maximum nullity

Let T be a tree with n≥2 vertices. Set S(T) for the set of all real symmetric matrices whose graph is T. Let A∈S(T) and i∈{1,…,n}. We denote by A(i) the principal submatrix of A obtained after deleting the row and column i. We set mA(0) for the multiplicity of the eigenvalue zero in A (the nullity o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2018-06, Vol.547, p.168-182
Hauptverfasser: Fernandes, Rosário, da Cruz, Henrique F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let T be a tree with n≥2 vertices. Set S(T) for the set of all real symmetric matrices whose graph is T. Let A∈S(T) and i∈{1,…,n}. We denote by A(i) the principal submatrix of A obtained after deleting the row and column i. We set mA(0) for the multiplicity of the eigenvalue zero in A (the nullity of A). When mA(i)(0)=mA(0)+1, we say that i is a P-vertex of A. As usual, M(T) denotes the maximum nullity occurring of B∈S(T). In this paper we determine an upper bound and a lower bound for the number of P-vertices in a matrix A∈S(T) with nullity M(T). We also prove that if the integer b is between these two bounds, then there is a matrix E∈S(T) with b P-vertices and maximum nullity.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2018.02.018