Multi-splits and Tropical Linear Spaces from Nested Matroids

We present an explicit combinatorial description of a special class of facets of the secondary polytopes of hypersimplices. These facets correspond to polytopal subdivisions called multi-splits. We show that the maximal cells in a multi-split of a hypersimplex are matroid polytopes of nested matroid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2019-04, Vol.61 (3), p.661-685
1. Verfasser: Schröter, Benjamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an explicit combinatorial description of a special class of facets of the secondary polytopes of hypersimplices. These facets correspond to polytopal subdivisions called multi-splits. We show that the maximal cells in a multi-split of a hypersimplex are matroid polytopes of nested matroids. Moreover, we derive a description of all multi-splits of a product of simplices. Additionally, we present a computational result to derive explicit lower bounds on the number of facets of secondary polytopes of hypersimplices.
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-018-0021-1