Multi-splits and Tropical Linear Spaces from Nested Matroids
We present an explicit combinatorial description of a special class of facets of the secondary polytopes of hypersimplices. These facets correspond to polytopal subdivisions called multi-splits. We show that the maximal cells in a multi-split of a hypersimplex are matroid polytopes of nested matroid...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2019-04, Vol.61 (3), p.661-685 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present an explicit combinatorial description of a special class of facets of the secondary polytopes of hypersimplices. These facets correspond to polytopal subdivisions called multi-splits. We show that the maximal cells in a multi-split of a hypersimplex are matroid polytopes of nested matroids. Moreover, we derive a description of all multi-splits of a product of simplices. Additionally, we present a computational result to derive explicit lower bounds on the number of facets of secondary polytopes of hypersimplices. |
---|---|
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.1007/s00454-018-0021-1 |