On deformations of one-dimensional Poisson structures of hydrodynamic type with degenerate metric

We provide a complete list of two- and three-component Poisson structures of hydrodynamic type with degenerate metric, and study their homogeneous deformations. In the non-degenerate case any such deformation is trivial, that is, can be obtained via Miura transformation. We demonstrate that in the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-03
1. Verfasser: Savoldi, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide a complete list of two- and three-component Poisson structures of hydrodynamic type with degenerate metric, and study their homogeneous deformations. In the non-degenerate case any such deformation is trivial, that is, can be obtained via Miura transformation. We demonstrate that in the degenerate case this class of deformations is non-trivial, and depends on a certain number of arbitrary functions. This shows that the second Poisson-Lichnerowicz cohomology group does not vanish.
ISSN:2331-8422