Distribution of platinum-group elements and Os isotopes in chromite ores from Mayarí-Baracoa Ophiolitic Belt (eastern Cuba)

The Mayari-Baracoa ophiolitic belt in eastern Cuba hosts abundant chromite deposits of historical economic importance. Among these deposits, the chemistry of chromite ore is very variable, ranging from high Al (Cr#=0.43-0.55) to high Cr (Cr#=0.60-0.83) compositions. Platinum-group element (PGE) cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contributions to mineralogy and petrology 2005-12, Vol.150 (6), p.589-607
Hauptverfasser: Gervilla, F., Proenza, J.A., Frei, R., González-Jiménez, J.M., Garrido, C.J., Melgarejo, J.C., Meibom, A., Díaz-Martínez, R., Lavaut, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Mayari-Baracoa ophiolitic belt in eastern Cuba hosts abundant chromite deposits of historical economic importance. Among these deposits, the chemistry of chromite ore is very variable, ranging from high Al (Cr#=0.43-0.55) to high Cr (Cr#=0.60-0.83) compositions. Platinum-group element (PGE) contents are also variable (from 33 ppb to 1.88 ppm) and correlate positively with the Cr# of the ore. Bulk PGE abundances correlate negatively with the Pd/Ir ratio showing that chromite concentrates mainly Os, Ir and Ru which gives rise to the characteristic negatively sloped, chrondrite-normalized PGE patterns in many chromitites. This is consistent with the mineralogy of PGEs, which is dominated by members of the laurite-erlichmanite solid solution series (RuS2-OsS2), with minor amounts of irarsite (IrAsS), Os-Ir alloys, Ru-Os-Ir-Fe-Ni alloys, Ni-Rh-As, and sulfides of Ir, Os, Rh, Cu, Ni, and/or Pd. Measured 187Os/188Os ratios (from 0.1304 to 0.1230) are among the lower values reported for podiform chromitites. The 187Os/188Os ratios decrease with increasing whole-rock PGE contents and Cr# of chromite. Furthermore, gamma Os values of all but one of the chromitite samples are negative indicating a subchondiritc mantle source. gamma Os decrease with increasing bulk Os content and decreasing 187Re/188Os ratios. These mineralogical and geochemical features are interpreted in terms of chromite crystallization from melts varying in composition from back-arc basalts (Al-rich chromite) to boninites (Cr-rich chromite) in a suprasubduction zone setting. Chromite crystallization occurs as a consequence of magma mixing and assimilation of preexisting gabbro sills at the mantle-crust transition zone. Cr#, PGE abundances, and bulk Os isotopic composition of chromitites are determined by the combined effects of mantle source heterogeneity, the degree of partial melting, the extent of melt-rock interactions, and the local sulfur fugacity. Small-scale (mu-m to cm) chemical and isotopic heterogeneities in the platinum-group minerals are controlled by the mechanism(s) of chromite crystallization in a heterogeneous environment created by the turbulent regime generated by successive inputs of different batches of melt. [PUBLICATION ABSTRACT]
ISSN:0010-7999
1432-0967
DOI:10.1007/s00410-005-0039-2