On the Cauchy problem of a two-dimesional Benjamin-Ono equation
In this work we shall show that the Cauchy problem \begin{equation} \left\{ \begin{aligned} &(u_t+u^pu_x+\mathcal H\partial_x^2u+ \alpha\mathcal H\partial_y^2u )_x - \gamma u_{yy}=0 \quad p\in{\nat} &u(0;x,y)=\phi{(x,y)} \end{aligned} \right. \end{equation} is locally well-posed in the Sobol...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work we shall show that the Cauchy problem \begin{equation} \left\{ \begin{aligned} &(u_t+u^pu_x+\mathcal H\partial_x^2u+ \alpha\mathcal H\partial_y^2u )_x - \gamma u_{yy}=0 \quad p\in{\nat} &u(0;x,y)=\phi{(x,y)} \end{aligned} \right. \end{equation} is locally well-posed in the Sobolev spaces \(H^s({\re}^2)\), \(X^s\) and weighted spaces \(X_s(w^2)\), for \(s>2\). |
---|---|
ISSN: | 2331-8422 |