First application of the revised Ti-in-zircon geothermometer to Paleoproterozoic ultrahigh-temperature granulites of Tuguiwula, Inner Mongolia, North China Craton

The revised titanium-in-zircon geothermometer was applied to Paleoproterozoic ultrahigh-temperature (UHT) granulites at Tuguiwula, Inner Mongolia, North China Craton. The Tuguiwula granulites contain diagnostic UHT mineral assemblages such as sapphirine + quartz and high alumina orthopyroxene + sill...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contributions to mineralogy and petrology 2010-02, Vol.159 (2), p.225-235
Hauptverfasser: Liu, S. J., Li, J. H., Santosh, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The revised titanium-in-zircon geothermometer was applied to Paleoproterozoic ultrahigh-temperature (UHT) granulites at Tuguiwula, Inner Mongolia, North China Craton. The Tuguiwula granulites contain diagnostic UHT mineral assemblages such as sapphirine + quartz and high alumina orthopyroxene + sillimanite + quartz, suggesting formation under temperatures of ca. 1,000°C and pressures of up to 10 kbar. Here, we report detailed petrographic studies and ICP-MS data on titanium concentration in zircons associated with the UHT assemblages. The zircons associated with sapphirine–spinel–sillimanite–magnetite assemblages have the highest Ti concentration of up to 57 ppm, yielding a temperature of 941°C, and suggesting that the growth of zircons occurred under ultrahigh-temperature conditions. The maximum temperatures obtained by the revised Ti-in-zircon geothermometer is lower than the equilibrium temperature of sapphirine + quartz, indicating an interval of cooling history of the granulites from UHT condition to ca. 940°C. Many of the zircons have Ti concentrations ranging from 10 to 33 ppm, indicating their growth or recrystallization under lower temperatures of ca. 745–870°C. These zircons are interpreted to have recrystallized during the retrograde stage indicated by microstructures such as cordierite rim or corona between spinel and quartz, and orthopyroxene–cordierite symplectite around garnet. Previous geochronological study on the zircons of the Tuguiwula UHT granulites gave a mean U–Pb SHRIMP age of 1.92 Ga. However, based on the Ti-in-zircon geothermometer results reported in this work, and considering the relatively slow thermal relaxation of these rocks, we infer that the timing of peak UHT metamorphism in the Tuguiwula area could be slightly older than 1.92 Ga.
ISSN:0010-7999
1432-0967
DOI:10.1007/s00410-009-0425-2