Bounds for Jacobian of harmonic injective mappings in n-dimensional space
Using normal family arguments, we show that the degree of the first nonzero homogenous polynomial in the expansion of \(n\) dimensional Euclidean harmonic \(K\)-quasiconformal mapping around an internal point is odd, and that such a map from the unit ball onto a bounded convex domain, with \(K< 3...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using normal family arguments, we show that the degree of the first nonzero homogenous polynomial in the expansion of \(n\) dimensional Euclidean harmonic \(K\)-quasiconformal mapping around an internal point is odd, and that such a map from the unit ball onto a bounded convex domain, with \(K< 3^{n-1}\), is co-Lipschitz. Also some generalizations of this result are given, as well as a generalization of Heinz's lemma for harmonic quasiconformal maps in \(\mathbb R^n\) and related results. |
---|---|
ISSN: | 2331-8422 |