Nonunimodular Lorentzian flat Lie algebras

A Lorentzian flat Lie group is a Lie group \(G\) with a flat left invariant metric \(\mu\) with signature \((1,n-1)=(-,+,\ldots,+)\). The Lie algebra \(\mathfrak{g}=T_eG\) of \(G\) endowed with \(\langle\;,\;\rangle=\mu(e)\) is called flat Lorentzian Lie algebra. It is known that the metric of a fla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-04
Hauptverfasser: Boucetta, Mohamed, Lebzioui, Hicham
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Lorentzian flat Lie group is a Lie group \(G\) with a flat left invariant metric \(\mu\) with signature \((1,n-1)=(-,+,\ldots,+)\). The Lie algebra \(\mathfrak{g}=T_eG\) of \(G\) endowed with \(\langle\;,\;\rangle=\mu(e)\) is called flat Lorentzian Lie algebra. It is known that the metric of a flat Lorentzian Lie group is geodesically complete if and only if its Lie algebra is unimodular. In this paper, we characterise nonunimodular Lorentzian flat Lie algebras as double extensions (in the sense of Aubert-Medina \cite{Aub-Med}) of Riemannian flat Lie algebras. As application of this result, we give all nonunimodular Lorentzian flat Lie algebras up to dimension 4.
ISSN:2331-8422