Goodness-of-fit Procedures for Copula Models Based on the Probability Integral Transformation

Wang & Wells [J. Amer. Statist. Assoc. 95 (2000) 62] describe a non-parametric approach for checking whether the dependence structure of a random sample of censored bivariate data is appropriately modelled by a given family of Archimedean copulas. Their procedure is based on a truncated version...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian journal of statistics 2006-06, Vol.33 (2), p.337-366
Hauptverfasser: GENEST, CHRISTIAN, QUESSY, JEAN-FRANÇOIS, RÉMILLARD, BRUNO
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wang & Wells [J. Amer. Statist. Assoc. 95 (2000) 62] describe a non-parametric approach for checking whether the dependence structure of a random sample of censored bivariate data is appropriately modelled by a given family of Archimedean copulas. Their procedure is based on a truncated version of the Kendall process introduced by Genest & Rivest [J. Amer. Statist. Assoc. 88 (1993) 1034] and later studied by Barbe et al. [J. Multivariate Anal. 58 (1996) 197]. Although Wang & Wells (2000) determine the asymptotic behaviour of their truncated process, their model selection method is based exclusively on the observed value of its L2-norm. This paper shows how to compute asymptotic p-values for various goodness-of-fit test statistics based on a non-truncated version of Kendall's process. Conditions for weak convergence are met in the most common copula models, whether Archimedean or not. The empirical behaviour of the proposed goodness-of-fit tests is studied by simulation, and power comparisons are made with a test proposed by Shih [Biometrika 85 (1998) 189] for the gamma frailty family.
ISSN:0303-6898
1467-9469
DOI:10.1111/j.1467-9469.2006.00470.x