Apolarity and direct sum decomposability of polynomials
A polynomial is a direct sum if it can be written as a sum of two non-zero polynomials in some distinct sets of variables, up to a linear change of variables. We analyze criteria for a homogeneous polynomial to be decomposable as a direct sum, in terms of the apolar ideal of the polynomial. We prove...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-02 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A polynomial is a direct sum if it can be written as a sum of two non-zero polynomials in some distinct sets of variables, up to a linear change of variables. We analyze criteria for a homogeneous polynomial to be decomposable as a direct sum, in terms of the apolar ideal of the polynomial. We prove that the apolar ideal of a polynomial of degree \(d\) strictly depending on all variables has a minimal generator of degree \(d\) if and only if it is a limit of direct sums. |
---|---|
ISSN: | 2331-8422 |