The Cornell-BNL FFAG-ERL Test Accelerator: White Paper
The Cornell-BNL FFAG-ERL Test Accelerator (C\(\beta\)) will comprise the first ever Energy Recovery Linac (ERL) based on a Fixed Field Alternating Gradient (FFAG) lattice. In particular, we plan to use a Non Scaling FFAG (NS-FFAG) lattice that is very compact and thus space- and cost- effective, ena...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-04 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bazarov, Ivan Dobbins, John Dunham, Bruce Hoffstaetter, Georg Mayes, Christopher Patterson, Ritchie Sagan, David Ben-Zvi, Ilan Berg, Scott Blaskiewicz, Michael Brooks, Stephen Brown, Kevin Fischer, Wolfram Yue Hao Meng, Wuzheng Méot, François Minty, Michiko Peggs, Stephen Ptitsin, Vadim Roser, Thomas Thieberger, Peter Trbojevic, Dejan Tsoupas, Nick |
description | The Cornell-BNL FFAG-ERL Test Accelerator (C\(\beta\)) will comprise the first ever Energy Recovery Linac (ERL) based on a Fixed Field Alternating Gradient (FFAG) lattice. In particular, we plan to use a Non Scaling FFAG (NS-FFAG) lattice that is very compact and thus space- and cost- effective, enabling multiple passes of the electron beam in a single recirculation beam line, using the superconducting RF (SRF) linac multiple times. The FFAG-ERL moves the cost optimized linac and recirculation lattice to a dramatically better optimum. The prime accelerator science motivation for C\(\beta\) is proving that the FFAG-ERL concept works. This is an important milestone for the Brookhaven National Laboratory (BNL) plans to build a major Nuclear Physics facility, eRHIC, based on producing 21 GeV electron beams to collide with the RHIC ion beams. A consequence of the C\(\beta\) work would be the availability of significantly better, cost-effective, compact CW high-brightness electron beams for a plethora of scientific investigations and applications, such as X-ray sources, dark-matter and dark-energy searches, and industrial high-power Free-Electron Laser (FEL) applications. C\(\beta\) brings together the resources and expertise of a large DOE National Laboratory, BNL, and a leading research university, Cornell. C\(\beta\) will be built in an existing building at Cornell, for the most part using components that have been developed under previous R&D programs, including a fully commissioned world-leading photoemission electron injector, a large SRF accelerator module, and a high-power beam stop. The only elements that require design and construction from scratch is the FFAG magnet transport lattice. This white paper describes a project that promises to propel high-power, high-brightness electron beam science and applications to an exciting new level. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2081368009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081368009</sourcerecordid><originalsourceid>FETCH-proquest_journals_20813680093</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwC8lIVXDOL8pLzcnRdfLzUXBzc3TXdQ3yUQhJLS5RcExOTs1JLUosyS-yUgjPyCxJVQhILEgt4mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpUCd8Vn5pUV5QKl4IwMLQ2MzCwMDS2PiVAEAtsszGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081368009</pqid></control><display><type>article</type><title>The Cornell-BNL FFAG-ERL Test Accelerator: White Paper</title><source>Free E- Journals</source><creator>Bazarov, Ivan ; Dobbins, John ; Dunham, Bruce ; Hoffstaetter, Georg ; Mayes, Christopher ; Patterson, Ritchie ; Sagan, David ; Ben-Zvi, Ilan ; Berg, Scott ; Blaskiewicz, Michael ; Brooks, Stephen ; Brown, Kevin ; Fischer, Wolfram ; Yue Hao ; Meng, Wuzheng ; Méot, François ; Minty, Michiko ; Peggs, Stephen ; Ptitsin, Vadim ; Roser, Thomas ; Thieberger, Peter ; Trbojevic, Dejan ; Tsoupas, Nick</creator><creatorcontrib>Bazarov, Ivan ; Dobbins, John ; Dunham, Bruce ; Hoffstaetter, Georg ; Mayes, Christopher ; Patterson, Ritchie ; Sagan, David ; Ben-Zvi, Ilan ; Berg, Scott ; Blaskiewicz, Michael ; Brooks, Stephen ; Brown, Kevin ; Fischer, Wolfram ; Yue Hao ; Meng, Wuzheng ; Méot, François ; Minty, Michiko ; Peggs, Stephen ; Ptitsin, Vadim ; Roser, Thomas ; Thieberger, Peter ; Trbojevic, Dejan ; Tsoupas, Nick</creatorcontrib><description>The Cornell-BNL FFAG-ERL Test Accelerator (C\(\beta\)) will comprise the first ever Energy Recovery Linac (ERL) based on a Fixed Field Alternating Gradient (FFAG) lattice. In particular, we plan to use a Non Scaling FFAG (NS-FFAG) lattice that is very compact and thus space- and cost- effective, enabling multiple passes of the electron beam in a single recirculation beam line, using the superconducting RF (SRF) linac multiple times. The FFAG-ERL moves the cost optimized linac and recirculation lattice to a dramatically better optimum. The prime accelerator science motivation for C\(\beta\) is proving that the FFAG-ERL concept works. This is an important milestone for the Brookhaven National Laboratory (BNL) plans to build a major Nuclear Physics facility, eRHIC, based on producing 21 GeV electron beams to collide with the RHIC ion beams. A consequence of the C\(\beta\) work would be the availability of significantly better, cost-effective, compact CW high-brightness electron beams for a plethora of scientific investigations and applications, such as X-ray sources, dark-matter and dark-energy searches, and industrial high-power Free-Electron Laser (FEL) applications. C\(\beta\) brings together the resources and expertise of a large DOE National Laboratory, BNL, and a leading research university, Cornell. C\(\beta\) will be built in an existing building at Cornell, for the most part using components that have been developed under previous R&D programs, including a fully commissioned world-leading photoemission electron injector, a large SRF accelerator module, and a high-power beam stop. The only elements that require design and construction from scratch is the FFAG magnet transport lattice. This white paper describes a project that promises to propel high-power, high-brightness electron beam science and applications to an exciting new level.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Brightness ; Colleges & universities ; Electron beams ; Electrons ; Energy recovery ; Free electron lasers ; Ion beams ; Laboratories ; Linear accelerators ; Nuclear physics ; Photoelectric emission ; R&D ; Relativistic Heavy Ion Collider ; Research & development ; Research facilities ; X ray sources</subject><ispartof>arXiv.org, 2015-04</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Bazarov, Ivan</creatorcontrib><creatorcontrib>Dobbins, John</creatorcontrib><creatorcontrib>Dunham, Bruce</creatorcontrib><creatorcontrib>Hoffstaetter, Georg</creatorcontrib><creatorcontrib>Mayes, Christopher</creatorcontrib><creatorcontrib>Patterson, Ritchie</creatorcontrib><creatorcontrib>Sagan, David</creatorcontrib><creatorcontrib>Ben-Zvi, Ilan</creatorcontrib><creatorcontrib>Berg, Scott</creatorcontrib><creatorcontrib>Blaskiewicz, Michael</creatorcontrib><creatorcontrib>Brooks, Stephen</creatorcontrib><creatorcontrib>Brown, Kevin</creatorcontrib><creatorcontrib>Fischer, Wolfram</creatorcontrib><creatorcontrib>Yue Hao</creatorcontrib><creatorcontrib>Meng, Wuzheng</creatorcontrib><creatorcontrib>Méot, François</creatorcontrib><creatorcontrib>Minty, Michiko</creatorcontrib><creatorcontrib>Peggs, Stephen</creatorcontrib><creatorcontrib>Ptitsin, Vadim</creatorcontrib><creatorcontrib>Roser, Thomas</creatorcontrib><creatorcontrib>Thieberger, Peter</creatorcontrib><creatorcontrib>Trbojevic, Dejan</creatorcontrib><creatorcontrib>Tsoupas, Nick</creatorcontrib><title>The Cornell-BNL FFAG-ERL Test Accelerator: White Paper</title><title>arXiv.org</title><description>The Cornell-BNL FFAG-ERL Test Accelerator (C\(\beta\)) will comprise the first ever Energy Recovery Linac (ERL) based on a Fixed Field Alternating Gradient (FFAG) lattice. In particular, we plan to use a Non Scaling FFAG (NS-FFAG) lattice that is very compact and thus space- and cost- effective, enabling multiple passes of the electron beam in a single recirculation beam line, using the superconducting RF (SRF) linac multiple times. The FFAG-ERL moves the cost optimized linac and recirculation lattice to a dramatically better optimum. The prime accelerator science motivation for C\(\beta\) is proving that the FFAG-ERL concept works. This is an important milestone for the Brookhaven National Laboratory (BNL) plans to build a major Nuclear Physics facility, eRHIC, based on producing 21 GeV electron beams to collide with the RHIC ion beams. A consequence of the C\(\beta\) work would be the availability of significantly better, cost-effective, compact CW high-brightness electron beams for a plethora of scientific investigations and applications, such as X-ray sources, dark-matter and dark-energy searches, and industrial high-power Free-Electron Laser (FEL) applications. C\(\beta\) brings together the resources and expertise of a large DOE National Laboratory, BNL, and a leading research university, Cornell. C\(\beta\) will be built in an existing building at Cornell, for the most part using components that have been developed under previous R&D programs, including a fully commissioned world-leading photoemission electron injector, a large SRF accelerator module, and a high-power beam stop. The only elements that require design and construction from scratch is the FFAG magnet transport lattice. This white paper describes a project that promises to propel high-power, high-brightness electron beam science and applications to an exciting new level.</description><subject>Brightness</subject><subject>Colleges & universities</subject><subject>Electron beams</subject><subject>Electrons</subject><subject>Energy recovery</subject><subject>Free electron lasers</subject><subject>Ion beams</subject><subject>Laboratories</subject><subject>Linear accelerators</subject><subject>Nuclear physics</subject><subject>Photoelectric emission</subject><subject>R&D</subject><subject>Relativistic Heavy Ion Collider</subject><subject>Research & development</subject><subject>Research facilities</subject><subject>X ray sources</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwC8lIVXDOL8pLzcnRdfLzUXBzc3TXdQ3yUQhJLS5RcExOTs1JLUosyS-yUgjPyCxJVQhILEgt4mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpUCd8Vn5pUV5QKl4IwMLQ2MzCwMDS2PiVAEAtsszGg</recordid><startdate>20150402</startdate><enddate>20150402</enddate><creator>Bazarov, Ivan</creator><creator>Dobbins, John</creator><creator>Dunham, Bruce</creator><creator>Hoffstaetter, Georg</creator><creator>Mayes, Christopher</creator><creator>Patterson, Ritchie</creator><creator>Sagan, David</creator><creator>Ben-Zvi, Ilan</creator><creator>Berg, Scott</creator><creator>Blaskiewicz, Michael</creator><creator>Brooks, Stephen</creator><creator>Brown, Kevin</creator><creator>Fischer, Wolfram</creator><creator>Yue Hao</creator><creator>Meng, Wuzheng</creator><creator>Méot, François</creator><creator>Minty, Michiko</creator><creator>Peggs, Stephen</creator><creator>Ptitsin, Vadim</creator><creator>Roser, Thomas</creator><creator>Thieberger, Peter</creator><creator>Trbojevic, Dejan</creator><creator>Tsoupas, Nick</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150402</creationdate><title>The Cornell-BNL FFAG-ERL Test Accelerator: White Paper</title><author>Bazarov, Ivan ; Dobbins, John ; Dunham, Bruce ; Hoffstaetter, Georg ; Mayes, Christopher ; Patterson, Ritchie ; Sagan, David ; Ben-Zvi, Ilan ; Berg, Scott ; Blaskiewicz, Michael ; Brooks, Stephen ; Brown, Kevin ; Fischer, Wolfram ; Yue Hao ; Meng, Wuzheng ; Méot, François ; Minty, Michiko ; Peggs, Stephen ; Ptitsin, Vadim ; Roser, Thomas ; Thieberger, Peter ; Trbojevic, Dejan ; Tsoupas, Nick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20813680093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Brightness</topic><topic>Colleges & universities</topic><topic>Electron beams</topic><topic>Electrons</topic><topic>Energy recovery</topic><topic>Free electron lasers</topic><topic>Ion beams</topic><topic>Laboratories</topic><topic>Linear accelerators</topic><topic>Nuclear physics</topic><topic>Photoelectric emission</topic><topic>R&D</topic><topic>Relativistic Heavy Ion Collider</topic><topic>Research & development</topic><topic>Research facilities</topic><topic>X ray sources</topic><toplevel>online_resources</toplevel><creatorcontrib>Bazarov, Ivan</creatorcontrib><creatorcontrib>Dobbins, John</creatorcontrib><creatorcontrib>Dunham, Bruce</creatorcontrib><creatorcontrib>Hoffstaetter, Georg</creatorcontrib><creatorcontrib>Mayes, Christopher</creatorcontrib><creatorcontrib>Patterson, Ritchie</creatorcontrib><creatorcontrib>Sagan, David</creatorcontrib><creatorcontrib>Ben-Zvi, Ilan</creatorcontrib><creatorcontrib>Berg, Scott</creatorcontrib><creatorcontrib>Blaskiewicz, Michael</creatorcontrib><creatorcontrib>Brooks, Stephen</creatorcontrib><creatorcontrib>Brown, Kevin</creatorcontrib><creatorcontrib>Fischer, Wolfram</creatorcontrib><creatorcontrib>Yue Hao</creatorcontrib><creatorcontrib>Meng, Wuzheng</creatorcontrib><creatorcontrib>Méot, François</creatorcontrib><creatorcontrib>Minty, Michiko</creatorcontrib><creatorcontrib>Peggs, Stephen</creatorcontrib><creatorcontrib>Ptitsin, Vadim</creatorcontrib><creatorcontrib>Roser, Thomas</creatorcontrib><creatorcontrib>Thieberger, Peter</creatorcontrib><creatorcontrib>Trbojevic, Dejan</creatorcontrib><creatorcontrib>Tsoupas, Nick</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bazarov, Ivan</au><au>Dobbins, John</au><au>Dunham, Bruce</au><au>Hoffstaetter, Georg</au><au>Mayes, Christopher</au><au>Patterson, Ritchie</au><au>Sagan, David</au><au>Ben-Zvi, Ilan</au><au>Berg, Scott</au><au>Blaskiewicz, Michael</au><au>Brooks, Stephen</au><au>Brown, Kevin</au><au>Fischer, Wolfram</au><au>Yue Hao</au><au>Meng, Wuzheng</au><au>Méot, François</au><au>Minty, Michiko</au><au>Peggs, Stephen</au><au>Ptitsin, Vadim</au><au>Roser, Thomas</au><au>Thieberger, Peter</au><au>Trbojevic, Dejan</au><au>Tsoupas, Nick</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Cornell-BNL FFAG-ERL Test Accelerator: White Paper</atitle><jtitle>arXiv.org</jtitle><date>2015-04-02</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>The Cornell-BNL FFAG-ERL Test Accelerator (C\(\beta\)) will comprise the first ever Energy Recovery Linac (ERL) based on a Fixed Field Alternating Gradient (FFAG) lattice. In particular, we plan to use a Non Scaling FFAG (NS-FFAG) lattice that is very compact and thus space- and cost- effective, enabling multiple passes of the electron beam in a single recirculation beam line, using the superconducting RF (SRF) linac multiple times. The FFAG-ERL moves the cost optimized linac and recirculation lattice to a dramatically better optimum. The prime accelerator science motivation for C\(\beta\) is proving that the FFAG-ERL concept works. This is an important milestone for the Brookhaven National Laboratory (BNL) plans to build a major Nuclear Physics facility, eRHIC, based on producing 21 GeV electron beams to collide with the RHIC ion beams. A consequence of the C\(\beta\) work would be the availability of significantly better, cost-effective, compact CW high-brightness electron beams for a plethora of scientific investigations and applications, such as X-ray sources, dark-matter and dark-energy searches, and industrial high-power Free-Electron Laser (FEL) applications. C\(\beta\) brings together the resources and expertise of a large DOE National Laboratory, BNL, and a leading research university, Cornell. C\(\beta\) will be built in an existing building at Cornell, for the most part using components that have been developed under previous R&D programs, including a fully commissioned world-leading photoemission electron injector, a large SRF accelerator module, and a high-power beam stop. The only elements that require design and construction from scratch is the FFAG magnet transport lattice. This white paper describes a project that promises to propel high-power, high-brightness electron beam science and applications to an exciting new level.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2015-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2081368009 |
source | Free E- Journals |
subjects | Brightness Colleges & universities Electron beams Electrons Energy recovery Free electron lasers Ion beams Laboratories Linear accelerators Nuclear physics Photoelectric emission R&D Relativistic Heavy Ion Collider Research & development Research facilities X ray sources |
title | The Cornell-BNL FFAG-ERL Test Accelerator: White Paper |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A35%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Cornell-BNL%20FFAG-ERL%20Test%20Accelerator:%20White%20Paper&rft.jtitle=arXiv.org&rft.au=Bazarov,%20Ivan&rft.date=2015-04-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2081368009%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081368009&rft_id=info:pmid/&rfr_iscdi=true |