The Cornell-BNL FFAG-ERL Test Accelerator: White Paper
The Cornell-BNL FFAG-ERL Test Accelerator (C\(\beta\)) will comprise the first ever Energy Recovery Linac (ERL) based on a Fixed Field Alternating Gradient (FFAG) lattice. In particular, we plan to use a Non Scaling FFAG (NS-FFAG) lattice that is very compact and thus space- and cost- effective, ena...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-04 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Cornell-BNL FFAG-ERL Test Accelerator (C\(\beta\)) will comprise the first ever Energy Recovery Linac (ERL) based on a Fixed Field Alternating Gradient (FFAG) lattice. In particular, we plan to use a Non Scaling FFAG (NS-FFAG) lattice that is very compact and thus space- and cost- effective, enabling multiple passes of the electron beam in a single recirculation beam line, using the superconducting RF (SRF) linac multiple times. The FFAG-ERL moves the cost optimized linac and recirculation lattice to a dramatically better optimum. The prime accelerator science motivation for C\(\beta\) is proving that the FFAG-ERL concept works. This is an important milestone for the Brookhaven National Laboratory (BNL) plans to build a major Nuclear Physics facility, eRHIC, based on producing 21 GeV electron beams to collide with the RHIC ion beams. A consequence of the C\(\beta\) work would be the availability of significantly better, cost-effective, compact CW high-brightness electron beams for a plethora of scientific investigations and applications, such as X-ray sources, dark-matter and dark-energy searches, and industrial high-power Free-Electron Laser (FEL) applications. C\(\beta\) brings together the resources and expertise of a large DOE National Laboratory, BNL, and a leading research university, Cornell. C\(\beta\) will be built in an existing building at Cornell, for the most part using components that have been developed under previous R&D programs, including a fully commissioned world-leading photoemission electron injector, a large SRF accelerator module, and a high-power beam stop. The only elements that require design and construction from scratch is the FFAG magnet transport lattice. This white paper describes a project that promises to propel high-power, high-brightness electron beam science and applications to an exciting new level. |
---|---|
ISSN: | 2331-8422 |