Learning Qualitative Models

In general, modeling is a complex and creative task, and building qualitative models is no exception. One way of automating this task is by means of machine learning. Observed behaviors of a modeled system are used as examples for a learning algorithm that constructs a model that is consistent with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The AI magazine 2003-12, Vol.24 (4), p.107-119
Hauptverfasser: Bratko, Ivan, Šuc, Dorian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue 4
container_start_page 107
container_title The AI magazine
container_volume 24
creator Bratko, Ivan
Šuc, Dorian
description In general, modeling is a complex and creative task, and building qualitative models is no exception. One way of automating this task is by means of machine learning. Observed behaviors of a modeled system are used as examples for a learning algorithm that constructs a model that is consistent with the data. In this article, we review approaches to learning qualitative models, either from numeric data or qualitative observations. We describe the quin program that looks for qualitative patterns in numeric data and outputs the results of learning as “qualitative trees.” We illustrate this using applications associated with systems control, in particular, the identification and optimization of controllers and human operator's control skill. We also review approaches that learn models in terms of qualitative differential equations.
doi_str_mv 10.1609/aimag.v24i4.1734
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_208135881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A112314323</galeid><sourcerecordid>A112314323</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2688-a19340ab00fd553ef0cbe564d40b5101ee83237a36f136dcd224aeecf7dda40b3</originalsourceid><addsrcrecordid>eNotkMFLwzAUxoMoOKd3wcvw3vlekqbpsQ6ng8kQ9Byy5rVkxHa23XT_vZnz8t7lx_d9_Bi7RZiigvzB-k9bT_dcejnFTMgzNuIiwyRXHM_ZCDKhE6mAX7Krvt8AgNJCjdjdkmzX-KaevO1s8IMd_J4mr62j0F-zi8qGnm7-_5h9zJ_eZy_JcvW8mBXLpOZK68RiLiTYNUDl0lRQBeWaUiWdhHWKgERaxClWqAqFcqXjXFqissqcs5ERY3Z_yt127deO-sFs2l3XxErDQaNIdTxjlpyg2gYyvinbZqCfoWxDoJpMHDRbmQKRC5SxLvL5if_2gQ5m20U_3cEgmKMu86fL_OkyR12mKIrF4xwgzbX4BaFzX40</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208135881</pqid></control><display><type>article</type><title>Learning Qualitative Models</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Bratko, Ivan ; Šuc, Dorian</creator><creatorcontrib>Bratko, Ivan ; Šuc, Dorian</creatorcontrib><description>In general, modeling is a complex and creative task, and building qualitative models is no exception. One way of automating this task is by means of machine learning. Observed behaviors of a modeled system are used as examples for a learning algorithm that constructs a model that is consistent with the data. In this article, we review approaches to learning qualitative models, either from numeric data or qualitative observations. We describe the quin program that looks for qualitative patterns in numeric data and outputs the results of learning as “qualitative trees.” We illustrate this using applications associated with systems control, in particular, the identification and optimization of controllers and human operator's control skill. We also review approaches that learn models in terms of qualitative differential equations.</description><identifier>ISSN: 0738-4602</identifier><identifier>EISSN: 2371-9621</identifier><identifier>DOI: 10.1609/aimag.v24i4.1734</identifier><language>eng</language><publisher>La Canada: American Association for Artificial Intelligence</publisher><subject>Algorithms ; Artificial intelligence ; Automation ; Datasets ; Decision trees ; Design ; Design engineering ; Identification ; Leaves ; Libraries ; Machine learning ; Mathematical models ; Noise ; Reverse engineering ; Simulation ; Variables</subject><ispartof>The AI magazine, 2003-12, Vol.24 (4), p.107-119</ispartof><rights>2003 The Authors. AI Magazine published by John Wiley &amp; Sons Ltd on behalf of Association for the Advancement of Artificial Intelligence</rights><rights>COPYRIGHT 2003 American Association for Artificial Intelligence</rights><rights>Copyright American Association for Artificial Intelligence Winter 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bratko, Ivan</creatorcontrib><creatorcontrib>Šuc, Dorian</creatorcontrib><title>Learning Qualitative Models</title><title>The AI magazine</title><addtitle>AI Magazine</addtitle><description>In general, modeling is a complex and creative task, and building qualitative models is no exception. One way of automating this task is by means of machine learning. Observed behaviors of a modeled system are used as examples for a learning algorithm that constructs a model that is consistent with the data. In this article, we review approaches to learning qualitative models, either from numeric data or qualitative observations. We describe the quin program that looks for qualitative patterns in numeric data and outputs the results of learning as “qualitative trees.” We illustrate this using applications associated with systems control, in particular, the identification and optimization of controllers and human operator's control skill. We also review approaches that learn models in terms of qualitative differential equations.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>Design</subject><subject>Design engineering</subject><subject>Identification</subject><subject>Leaves</subject><subject>Libraries</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Noise</subject><subject>Reverse engineering</subject><subject>Simulation</subject><subject>Variables</subject><issn>0738-4602</issn><issn>2371-9621</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkMFLwzAUxoMoOKd3wcvw3vlekqbpsQ6ng8kQ9Byy5rVkxHa23XT_vZnz8t7lx_d9_Bi7RZiigvzB-k9bT_dcejnFTMgzNuIiwyRXHM_ZCDKhE6mAX7Krvt8AgNJCjdjdkmzX-KaevO1s8IMd_J4mr62j0F-zi8qGnm7-_5h9zJ_eZy_JcvW8mBXLpOZK68RiLiTYNUDl0lRQBeWaUiWdhHWKgERaxClWqAqFcqXjXFqissqcs5ERY3Z_yt127deO-sFs2l3XxErDQaNIdTxjlpyg2gYyvinbZqCfoWxDoJpMHDRbmQKRC5SxLvL5if_2gQ5m20U_3cEgmKMu86fL_OkyR12mKIrF4xwgzbX4BaFzX40</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>Bratko, Ivan</creator><creator>Šuc, Dorian</creator><general>American Association for Artificial Intelligence</general><general>John Wiley &amp; Sons, Inc</general><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>U9A</scope></search><sort><creationdate>20031201</creationdate><title>Learning Qualitative Models</title><author>Bratko, Ivan ; Šuc, Dorian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2688-a19340ab00fd553ef0cbe564d40b5101ee83237a36f136dcd224aeecf7dda40b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>Design</topic><topic>Design engineering</topic><topic>Identification</topic><topic>Leaves</topic><topic>Libraries</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Noise</topic><topic>Reverse engineering</topic><topic>Simulation</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bratko, Ivan</creatorcontrib><creatorcontrib>Šuc, Dorian</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>The AI magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bratko, Ivan</au><au>Šuc, Dorian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Qualitative Models</atitle><jtitle>The AI magazine</jtitle><addtitle>AI Magazine</addtitle><date>2003-12-01</date><risdate>2003</risdate><volume>24</volume><issue>4</issue><spage>107</spage><epage>119</epage><pages>107-119</pages><issn>0738-4602</issn><eissn>2371-9621</eissn><abstract>In general, modeling is a complex and creative task, and building qualitative models is no exception. One way of automating this task is by means of machine learning. Observed behaviors of a modeled system are used as examples for a learning algorithm that constructs a model that is consistent with the data. In this article, we review approaches to learning qualitative models, either from numeric data or qualitative observations. We describe the quin program that looks for qualitative patterns in numeric data and outputs the results of learning as “qualitative trees.” We illustrate this using applications associated with systems control, in particular, the identification and optimization of controllers and human operator's control skill. We also review approaches that learn models in terms of qualitative differential equations.</abstract><cop>La Canada</cop><pub>American Association for Artificial Intelligence</pub><doi>10.1609/aimag.v24i4.1734</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0738-4602
ispartof The AI magazine, 2003-12, Vol.24 (4), p.107-119
issn 0738-4602
2371-9621
language eng
recordid cdi_proquest_journals_208135881
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algorithms
Artificial intelligence
Automation
Datasets
Decision trees
Design
Design engineering
Identification
Leaves
Libraries
Machine learning
Mathematical models
Noise
Reverse engineering
Simulation
Variables
title Learning Qualitative Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A27%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Qualitative%20Models&rft.jtitle=The%20AI%20magazine&rft.au=Bratko,%20Ivan&rft.date=2003-12-01&rft.volume=24&rft.issue=4&rft.spage=107&rft.epage=119&rft.pages=107-119&rft.issn=0738-4602&rft.eissn=2371-9621&rft_id=info:doi/10.1609/aimag.v24i4.1734&rft_dat=%3Cgale_proqu%3EA112314323%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208135881&rft_id=info:pmid/&rft_galeid=A112314323&rfr_iscdi=true