Learning Qualitative Models
In general, modeling is a complex and creative task, and building qualitative models is no exception. One way of automating this task is by means of machine learning. Observed behaviors of a modeled system are used as examples for a learning algorithm that constructs a model that is consistent with...
Gespeichert in:
Veröffentlicht in: | The AI magazine 2003-12, Vol.24 (4), p.107-119 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 119 |
---|---|
container_issue | 4 |
container_start_page | 107 |
container_title | The AI magazine |
container_volume | 24 |
creator | Bratko, Ivan Šuc, Dorian |
description | In general, modeling is a complex and creative task, and building qualitative models is no exception. One way of automating this task is by means of machine learning. Observed behaviors of a modeled system are used as examples for a learning algorithm that constructs a model that is consistent with the data. In this article, we review approaches to learning qualitative models, either from numeric data or qualitative observations. We describe the quin program that looks for qualitative patterns in numeric data and outputs the results of learning as “qualitative trees.” We illustrate this using applications associated with systems control, in particular, the identification and optimization of controllers and human operator's control skill. We also review approaches that learn models in terms of qualitative differential equations. |
doi_str_mv | 10.1609/aimag.v24i4.1734 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_208135881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A112314323</galeid><sourcerecordid>A112314323</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2688-a19340ab00fd553ef0cbe564d40b5101ee83237a36f136dcd224aeecf7dda40b3</originalsourceid><addsrcrecordid>eNotkMFLwzAUxoMoOKd3wcvw3vlekqbpsQ6ng8kQ9Byy5rVkxHa23XT_vZnz8t7lx_d9_Bi7RZiigvzB-k9bT_dcejnFTMgzNuIiwyRXHM_ZCDKhE6mAX7Krvt8AgNJCjdjdkmzX-KaevO1s8IMd_J4mr62j0F-zi8qGnm7-_5h9zJ_eZy_JcvW8mBXLpOZK68RiLiTYNUDl0lRQBeWaUiWdhHWKgERaxClWqAqFcqXjXFqissqcs5ERY3Z_yt127deO-sFs2l3XxErDQaNIdTxjlpyg2gYyvinbZqCfoWxDoJpMHDRbmQKRC5SxLvL5if_2gQ5m20U_3cEgmKMu86fL_OkyR12mKIrF4xwgzbX4BaFzX40</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208135881</pqid></control><display><type>article</type><title>Learning Qualitative Models</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Bratko, Ivan ; Šuc, Dorian</creator><creatorcontrib>Bratko, Ivan ; Šuc, Dorian</creatorcontrib><description>In general, modeling is a complex and creative task, and building qualitative models is no exception. One way of automating this task is by means of machine learning. Observed behaviors of a modeled system are used as examples for a learning algorithm that constructs a model that is consistent with the data. In this article, we review approaches to learning qualitative models, either from numeric data or qualitative observations. We describe the quin program that looks for qualitative patterns in numeric data and outputs the results of learning as “qualitative trees.” We illustrate this using applications associated with systems control, in particular, the identification and optimization of controllers and human operator's control skill. We also review approaches that learn models in terms of qualitative differential equations.</description><identifier>ISSN: 0738-4602</identifier><identifier>EISSN: 2371-9621</identifier><identifier>DOI: 10.1609/aimag.v24i4.1734</identifier><language>eng</language><publisher>La Canada: American Association for Artificial Intelligence</publisher><subject>Algorithms ; Artificial intelligence ; Automation ; Datasets ; Decision trees ; Design ; Design engineering ; Identification ; Leaves ; Libraries ; Machine learning ; Mathematical models ; Noise ; Reverse engineering ; Simulation ; Variables</subject><ispartof>The AI magazine, 2003-12, Vol.24 (4), p.107-119</ispartof><rights>2003 The Authors. AI Magazine published by John Wiley & Sons Ltd on behalf of Association for the Advancement of Artificial Intelligence</rights><rights>COPYRIGHT 2003 American Association for Artificial Intelligence</rights><rights>Copyright American Association for Artificial Intelligence Winter 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bratko, Ivan</creatorcontrib><creatorcontrib>Šuc, Dorian</creatorcontrib><title>Learning Qualitative Models</title><title>The AI magazine</title><addtitle>AI Magazine</addtitle><description>In general, modeling is a complex and creative task, and building qualitative models is no exception. One way of automating this task is by means of machine learning. Observed behaviors of a modeled system are used as examples for a learning algorithm that constructs a model that is consistent with the data. In this article, we review approaches to learning qualitative models, either from numeric data or qualitative observations. We describe the quin program that looks for qualitative patterns in numeric data and outputs the results of learning as “qualitative trees.” We illustrate this using applications associated with systems control, in particular, the identification and optimization of controllers and human operator's control skill. We also review approaches that learn models in terms of qualitative differential equations.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>Design</subject><subject>Design engineering</subject><subject>Identification</subject><subject>Leaves</subject><subject>Libraries</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Noise</subject><subject>Reverse engineering</subject><subject>Simulation</subject><subject>Variables</subject><issn>0738-4602</issn><issn>2371-9621</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkMFLwzAUxoMoOKd3wcvw3vlekqbpsQ6ng8kQ9Byy5rVkxHa23XT_vZnz8t7lx_d9_Bi7RZiigvzB-k9bT_dcejnFTMgzNuIiwyRXHM_ZCDKhE6mAX7Krvt8AgNJCjdjdkmzX-KaevO1s8IMd_J4mr62j0F-zi8qGnm7-_5h9zJ_eZy_JcvW8mBXLpOZK68RiLiTYNUDl0lRQBeWaUiWdhHWKgERaxClWqAqFcqXjXFqissqcs5ERY3Z_yt127deO-sFs2l3XxErDQaNIdTxjlpyg2gYyvinbZqCfoWxDoJpMHDRbmQKRC5SxLvL5if_2gQ5m20U_3cEgmKMu86fL_OkyR12mKIrF4xwgzbX4BaFzX40</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>Bratko, Ivan</creator><creator>Šuc, Dorian</creator><general>American Association for Artificial Intelligence</general><general>John Wiley & Sons, Inc</general><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>U9A</scope></search><sort><creationdate>20031201</creationdate><title>Learning Qualitative Models</title><author>Bratko, Ivan ; Šuc, Dorian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2688-a19340ab00fd553ef0cbe564d40b5101ee83237a36f136dcd224aeecf7dda40b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>Design</topic><topic>Design engineering</topic><topic>Identification</topic><topic>Leaves</topic><topic>Libraries</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Noise</topic><topic>Reverse engineering</topic><topic>Simulation</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bratko, Ivan</creatorcontrib><creatorcontrib>Šuc, Dorian</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>The AI magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bratko, Ivan</au><au>Šuc, Dorian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Qualitative Models</atitle><jtitle>The AI magazine</jtitle><addtitle>AI Magazine</addtitle><date>2003-12-01</date><risdate>2003</risdate><volume>24</volume><issue>4</issue><spage>107</spage><epage>119</epage><pages>107-119</pages><issn>0738-4602</issn><eissn>2371-9621</eissn><abstract>In general, modeling is a complex and creative task, and building qualitative models is no exception. One way of automating this task is by means of machine learning. Observed behaviors of a modeled system are used as examples for a learning algorithm that constructs a model that is consistent with the data. In this article, we review approaches to learning qualitative models, either from numeric data or qualitative observations. We describe the quin program that looks for qualitative patterns in numeric data and outputs the results of learning as “qualitative trees.” We illustrate this using applications associated with systems control, in particular, the identification and optimization of controllers and human operator's control skill. We also review approaches that learn models in terms of qualitative differential equations.</abstract><cop>La Canada</cop><pub>American Association for Artificial Intelligence</pub><doi>10.1609/aimag.v24i4.1734</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0738-4602 |
ispartof | The AI magazine, 2003-12, Vol.24 (4), p.107-119 |
issn | 0738-4602 2371-9621 |
language | eng |
recordid | cdi_proquest_journals_208135881 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Algorithms Artificial intelligence Automation Datasets Decision trees Design Design engineering Identification Leaves Libraries Machine learning Mathematical models Noise Reverse engineering Simulation Variables |
title | Learning Qualitative Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A27%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Qualitative%20Models&rft.jtitle=The%20AI%20magazine&rft.au=Bratko,%20Ivan&rft.date=2003-12-01&rft.volume=24&rft.issue=4&rft.spage=107&rft.epage=119&rft.pages=107-119&rft.issn=0738-4602&rft.eissn=2371-9621&rft_id=info:doi/10.1609/aimag.v24i4.1734&rft_dat=%3Cgale_proqu%3EA112314323%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208135881&rft_id=info:pmid/&rft_galeid=A112314323&rfr_iscdi=true |