Learning Qualitative Models

In general, modeling is a complex and creative task, and building qualitative models is no exception. One way of automating this task is by means of machine learning. Observed behaviors of a modeled system are used as examples for a learning algorithm that constructs a model that is consistent with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The AI magazine 2003-12, Vol.24 (4), p.107-119
Hauptverfasser: Bratko, Ivan, Šuc, Dorian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In general, modeling is a complex and creative task, and building qualitative models is no exception. One way of automating this task is by means of machine learning. Observed behaviors of a modeled system are used as examples for a learning algorithm that constructs a model that is consistent with the data. In this article, we review approaches to learning qualitative models, either from numeric data or qualitative observations. We describe the quin program that looks for qualitative patterns in numeric data and outputs the results of learning as “qualitative trees.” We illustrate this using applications associated with systems control, in particular, the identification and optimization of controllers and human operator's control skill. We also review approaches that learn models in terms of qualitative differential equations.
ISSN:0738-4602
2371-9621
DOI:10.1609/aimag.v24i4.1734