Learning Style Similarity for Searching Infographics

Infographics are complex graphic designs integrating text, images, charts and sketches. Despite the increasing popularity of infographics and the rapid growth of online design portfolios, little research investigates how we can take advantage of these design resources. In this paper we present a met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-05
Hauptverfasser: Saleh, Babak, Dontcheva, Mira, Hertzmann, Aaron, Liu, Zhicheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Infographics are complex graphic designs integrating text, images, charts and sketches. Despite the increasing popularity of infographics and the rapid growth of online design portfolios, little research investigates how we can take advantage of these design resources. In this paper we present a method for measuring the style similarity between infographics. Based on human perception data collected from crowdsourced experiments, we use computer vision and machine learning algorithms to learn a style similarity metric for infographic designs. We evaluate different visual features and learning algorithms and find that a combination of color histograms and Histograms-of-Gradients (HoG) features is most effective in characterizing the style of infographics. We demonstrate our similarity metric on a preliminary image retrieval test.
ISSN:2331-8422