Task-Based Algorithm for Matrix Multiplication: A Step Towards Block-Sparse Tensor Computing
Distributed-memory matrix multiplication (MM) is a key element of algorithms in many domains (machine learning, quantum physics). Conventional algorithms for dense MM rely on regular/uniform data decomposition to ensure load balance. These traits conflict with the irregular structure (block-sparse o...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-04 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Distributed-memory matrix multiplication (MM) is a key element of algorithms in many domains (machine learning, quantum physics). Conventional algorithms for dense MM rely on regular/uniform data decomposition to ensure load balance. These traits conflict with the irregular structure (block-sparse or rank-sparse within blocks) that is increasingly relevant for fast methods in quantum physics. To deal with such irregular data we present a new MM algorithm based on Scalable Universal Matrix Multiplication Algorithm (SUMMA). The novel features are: (1) multiple-issue scheduling of SUMMA iterations, and (2) fine-grained task-based formulation. The latter eliminates the need for explicit internodal synchronization; with multiple-iteration scheduling this allows load imbalance due to nonuniform matrix structure. For square MM with uniform and nonuniform block sizes (the latter simulates matrices with general irregular structure) we found excellent performance in weak and strong-scaling regimes, on commodity and high-end hardware. |
---|---|
ISSN: | 2331-8422 |