Convex Approaches to Model Wavelet Sparsity Patterns

Statistical dependencies among wavelet coefficients are commonly represented by graphical models such as hidden Markov trees(HMTs). However, in linear inverse problems such as deconvolution, tomography, and compressed sensing, the presence of a sensing or observation matrix produces a linear mixing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2011-04
Hauptverfasser: Rao, Nikhil S, Nowak, Robert D, Wright, Stephen J, Kingsbury, Nick G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Statistical dependencies among wavelet coefficients are commonly represented by graphical models such as hidden Markov trees(HMTs). However, in linear inverse problems such as deconvolution, tomography, and compressed sensing, the presence of a sensing or observation matrix produces a linear mixing of the simple Markovian dependency structure. This leads to reconstruction problems that are non-convex optimizations. Past work has dealt with this issue by resorting to greedy or suboptimal iterative reconstruction methods. In this paper, we propose new modeling approaches based on group-sparsity penalties that leads to convex optimizations that can be solved exactly and efficiently. We show that the methods we develop perform significantly better in deconvolution and compressed sensing applications, while being as computationally efficient as standard coefficient-wise approaches such as lasso.
ISSN:2331-8422