A posteriori error estimation in a finite element method for reconstruction of dielectric permittivity
We present a posteriori error estimates for finite element approximations in a minimization approach to a coefficient inverse problem. The problem is that of reconstructing the dielectric permittivity \(\varepsilon = \varepsilon(\mathbf{x})\), \(\mathbf{x}\in\Omega\subset\mathbb{R}^3\), from boundar...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-02 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a posteriori error estimates for finite element approximations in a minimization approach to a coefficient inverse problem. The problem is that of reconstructing the dielectric permittivity \(\varepsilon = \varepsilon(\mathbf{x})\), \(\mathbf{x}\in\Omega\subset\mathbb{R}^3\), from boundary measurements of the electric field. The electric field is related to the permittivity via Maxwell's equations. The reconstruction procedure is based on minimization of a Tikhonov functional where the permittivity, the electric field and a Lagrangian multiplier function are approximated by peicewise polynomials. Our main result is an estimate for the difference between the computed coefficient \(\varepsilon_h\) and the true minimizer \(\varepsilon\), in terms of the computed functions. |
---|---|
ISSN: | 2331-8422 |