A posteriori error estimation in a finite element method for reconstruction of dielectric permittivity

We present a posteriori error estimates for finite element approximations in a minimization approach to a coefficient inverse problem. The problem is that of reconstructing the dielectric permittivity \(\varepsilon = \varepsilon(\mathbf{x})\), \(\mathbf{x}\in\Omega\subset\mathbb{R}^3\), from boundar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-02
1. Verfasser: John Bondestam Malmberg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a posteriori error estimates for finite element approximations in a minimization approach to a coefficient inverse problem. The problem is that of reconstructing the dielectric permittivity \(\varepsilon = \varepsilon(\mathbf{x})\), \(\mathbf{x}\in\Omega\subset\mathbb{R}^3\), from boundary measurements of the electric field. The electric field is related to the permittivity via Maxwell's equations. The reconstruction procedure is based on minimization of a Tikhonov functional where the permittivity, the electric field and a Lagrangian multiplier function are approximated by peicewise polynomials. Our main result is an estimate for the difference between the computed coefficient \(\varepsilon_h\) and the true minimizer \(\varepsilon\), in terms of the computed functions.
ISSN:2331-8422