On vertical dynamic stability and cross‐section optimization of closed‐ended hollow pile by considering soil compaction effects

Summary This paper conducts a comprehensive study on the effects of expansion force after pile driving on the vertical vibration of the hollow pile. The initial radially inhomogeneous strain field of soil in disturbed soil region and dynamic shear modulus of remolded soil are constructed by applying...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical and analytical methods in geomechanics 2018-08, Vol.42 (12), p.1425-1441
Hauptverfasser: Hu, Wentao, Wang, Ning, Xu, Changjie, Yuan, Feng, Jin, Zijie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary This paper conducts a comprehensive study on the effects of expansion force after pile driving on the vertical vibration of the hollow pile. The initial radially inhomogeneous strain field of soil in disturbed soil region and dynamic shear modulus of remolded soil are constructed by applying the cylindrical cavity expansion method. The equation governing the incremental motion of the soil is consequently deduced on the basis of incremental deformations superposed on an underlying finite deformation. The longitudinal impedance of the top of the pile and the velocity response in frequency and time domains are also numerically studied. The relations between the expansion force after pile driving and the velocity response of the pile with different wall thickness are discussed accordingly. The results suggest that a pile has a better dynamical stability when the characteristics of the section are optimized and interacting force with soil medium gets smaller.
ISSN:0363-9061
1096-9853
DOI:10.1002/nag.2807