Left Adjoints for Generalized Multicategories

We construct generalized multicategories associated to an arbitrary operad in Cat that is \(\Sigma\)-free. The construction generalizes the passage to symmetric multicategories from permutative categories, which is the case when the operad is the categorical version of the Barratt-Eccles operad. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-02
1. Verfasser: Elmendorf, A D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct generalized multicategories associated to an arbitrary operad in Cat that is \(\Sigma\)-free. The construction generalizes the passage to symmetric multicategories from permutative categories, which is the case when the operad is the categorical version of the Barratt-Eccles operad. The main theorem is that there is an adjoint pair relating algebras over the operad to this sort of generalized multicategory. The construction is flexible enough to allow for equivariant generalizations.
ISSN:2331-8422