Gradual Training Method for Denoising Auto Encoders
Stacked denoising auto encoders (DAEs) are well known to learn useful deep representations, which can be used to improve supervised training by initializing a deep network. We investigate a training scheme of a deep DAE, where DAE layers are gradually added and keep adapting as additional layers are...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-04 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stacked denoising auto encoders (DAEs) are well known to learn useful deep representations, which can be used to improve supervised training by initializing a deep network. We investigate a training scheme of a deep DAE, where DAE layers are gradually added and keep adapting as additional layers are added. We show that in the regime of mid-sized datasets, this gradual training provides a small but consistent improvement over stacked training in both reconstruction quality and classification error over stacked training on MNIST and CIFAR datasets. |
---|---|
ISSN: | 2331-8422 |