Entire \(f\)-maximal graphs in the lorentzian product \(\Bbb G^n\times\Bbb R_1\)

In the lorentzian product \(\Bbb G^n\times\Bbb R_1,\) we give a comparison between the \(f\)-volume of an entire \(f\)-maximal graph and the \(f\)-volume of the hyperbolic \(H_r^+\) under the assumption that the gradient of the function defining the graph is bounded away from 1. As a consequence, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-12
Hauptverfasser: An, H V Q, Cuong, D V, Duyen, N T M, Hieu, D T, Nam, T L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the lorentzian product \(\Bbb G^n\times\Bbb R_1,\) we give a comparison between the \(f\)-volume of an entire \(f\)-maximal graph and the \(f\)-volume of the hyperbolic \(H_r^+\) under the assumption that the gradient of the function defining the graph is bounded away from 1. As a consequence, we obtain a Bernstein type theorem for \(f\)-maximal graphs in \(\Bbb G^n\times\Bbb R_1.\) Without the condition on the gradient of the function, an example of non-planar entire \(f\)-maximal graph in the Lorentzian product \(\Bbb G^n\times\Bbb R_1\) is given. This example shows that the assumption on the gradient of the function defining the graph in the volume comparison as well as in the Bernstein type theorem is essential.
ISSN:2331-8422