Idèlic class field theory for 3-manifolds and very admissible links
We study a topological analogue of idèlic class field theory for 3-manifolds, in the spirit of arithmetic topology. We firstly introduce the notion of a very admissible link \(\mathcal{K}\) in a 3-manifold \(M\), which plays a role analogous to the set of primes of a number field. For such a pair \(...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2016-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study a topological analogue of idèlic class field theory for 3-manifolds, in the spirit of arithmetic topology. We firstly introduce the notion of a very admissible link \(\mathcal{K}\) in a 3-manifold \(M\), which plays a role analogous to the set of primes of a number field. For such a pair \((M,\mathcal{K})\), we introduce the notion of idèles and define the idèle class group. Then, getting the local class field theory for each knot in \(\mathcal{K}\) together, we establish analogues of the global reciprocity law and the existence theorem of idèlic class field theory. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1501.03890 |