Idèlic class field theory for 3-manifolds and very admissible links

We study a topological analogue of idèlic class field theory for 3-manifolds, in the spirit of arithmetic topology. We firstly introduce the notion of a very admissible link \(\mathcal{K}\) in a 3-manifold \(M\), which plays a role analogous to the set of primes of a number field. For such a pair \(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2016-11
Hauptverfasser: Niibo, Hirofumi, Ueki, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a topological analogue of idèlic class field theory for 3-manifolds, in the spirit of arithmetic topology. We firstly introduce the notion of a very admissible link \(\mathcal{K}\) in a 3-manifold \(M\), which plays a role analogous to the set of primes of a number field. For such a pair \((M,\mathcal{K})\), we introduce the notion of idèles and define the idèle class group. Then, getting the local class field theory for each knot in \(\mathcal{K}\) together, we establish analogues of the global reciprocity law and the existence theorem of idèlic class field theory.
ISSN:2331-8422
DOI:10.48550/arxiv.1501.03890