Estimation of Hurst Parameter of Fractional Brownian Motion Using CMARS Method
In this study, we develop a new theory of estimating Hurst parame- ter using conic multivariate adaptive regression splines (CMARS) method. We concentrate on the strong solution of stochastic differentional equations (SDEs) driven by fractional Brownian motion (fBm). The superiority of our approach...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2013-02 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we develop a new theory of estimating Hurst parame- ter using conic multivariate adaptive regression splines (CMARS) method. We concentrate on the strong solution of stochastic differentional equations (SDEs) driven by fractional Brownian motion (fBm). The superiority of our approach to the others is, it not only estimates the Hurst parameter but also finds spline parameters of the stochastic process in an adaptive way. We examine the performance of our estimations using simulated test data. Keywords: Stochastic differential equations, fractional Brownian motion, Hurst parameter, conic multivariate adaptive regression splines |
---|---|
ISSN: | 2331-8422 |