Representation of mean-periodic functions in series of exponential polynomials
Let \(\theta\) be a Young function and consider the space \(\mathcal{F}_{\theta}(\C)\) of all entire functions with \(\theta\)-exponential growth. In this paper, we are interested in the solutions \(f\in \mathcal{F}_{\theta}(\C)\) of the convolution equation \(T\star f=0\), called mean-periodic func...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2008-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ouerdiane, H Ounaies, M |
description | Let \(\theta\) be a Young function and consider the space \(\mathcal{F}_{\theta}(\C)\) of all entire functions with \(\theta\)-exponential growth. In this paper, we are interested in the solutions \(f\in \mathcal{F}_{\theta}(\C)\) of the convolution equation \(T\star f=0\), called mean-periodic functions, where \(T\) is in the topological dual of \(\mathcal{F}_{\theta}(\C)\). We show that each mean-periodic function can be represented in an explicit way as a convergent series of exponential polynomials. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2080955755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080955755</sourcerecordid><originalsourceid>FETCH-proquest_journals_20809557553</originalsourceid><addsrcrecordid>eNqNjsEKwjAQRIMgWLT_EPAciKmx9SyKJw_ivZS6hZR2N2Yb0L83BT_A0wzzZmAWIjNFsVPV3piVyJl7rbU5lMbaIhO3O_gADDg1kyOU1MkRGlQegqOna2UXsZ0JS4eSUwo8l-DtCdPKNYP0NHyQxmR5I5ZdEsh_uhbby_lxuiof6BWBp7qnGDCh2uhKH60t043_Wl9lpD9i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080955755</pqid></control><display><type>article</type><title>Representation of mean-periodic functions in series of exponential polynomials</title><source>Free E- Journals</source><creator>Ouerdiane, H ; Ounaies, M</creator><creatorcontrib>Ouerdiane, H ; Ounaies, M</creatorcontrib><description>Let \(\theta\) be a Young function and consider the space \(\mathcal{F}_{\theta}(\C)\) of all entire functions with \(\theta\)-exponential growth. In this paper, we are interested in the solutions \(f\in \mathcal{F}_{\theta}(\C)\) of the convolution equation \(T\star f=0\), called mean-periodic functions, where \(T\) is in the topological dual of \(\mathcal{F}_{\theta}(\C)\). We show that each mean-periodic function can be represented in an explicit way as a convergent series of exponential polynomials.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convolution ; Entire functions ; Mathematical analysis ; Periodic functions ; Polynomials</subject><ispartof>arXiv.org, 2008-03</ispartof><rights>2008. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Ouerdiane, H</creatorcontrib><creatorcontrib>Ounaies, M</creatorcontrib><title>Representation of mean-periodic functions in series of exponential polynomials</title><title>arXiv.org</title><description>Let \(\theta\) be a Young function and consider the space \(\mathcal{F}_{\theta}(\C)\) of all entire functions with \(\theta\)-exponential growth. In this paper, we are interested in the solutions \(f\in \mathcal{F}_{\theta}(\C)\) of the convolution equation \(T\star f=0\), called mean-periodic functions, where \(T\) is in the topological dual of \(\mathcal{F}_{\theta}(\C)\). We show that each mean-periodic function can be represented in an explicit way as a convergent series of exponential polynomials.</description><subject>Convolution</subject><subject>Entire functions</subject><subject>Mathematical analysis</subject><subject>Periodic functions</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjsEKwjAQRIMgWLT_EPAciKmx9SyKJw_ivZS6hZR2N2Yb0L83BT_A0wzzZmAWIjNFsVPV3piVyJl7rbU5lMbaIhO3O_gADDg1kyOU1MkRGlQegqOna2UXsZ0JS4eSUwo8l-DtCdPKNYP0NHyQxmR5I5ZdEsh_uhbby_lxuiof6BWBp7qnGDCh2uhKH60t043_Wl9lpD9i</recordid><startdate>20080303</startdate><enddate>20080303</enddate><creator>Ouerdiane, H</creator><creator>Ounaies, M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20080303</creationdate><title>Representation of mean-periodic functions in series of exponential polynomials</title><author>Ouerdiane, H ; Ounaies, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20809557553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Convolution</topic><topic>Entire functions</topic><topic>Mathematical analysis</topic><topic>Periodic functions</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Ouerdiane, H</creatorcontrib><creatorcontrib>Ounaies, M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ouerdiane, H</au><au>Ounaies, M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Representation of mean-periodic functions in series of exponential polynomials</atitle><jtitle>arXiv.org</jtitle><date>2008-03-03</date><risdate>2008</risdate><eissn>2331-8422</eissn><abstract>Let \(\theta\) be a Young function and consider the space \(\mathcal{F}_{\theta}(\C)\) of all entire functions with \(\theta\)-exponential growth. In this paper, we are interested in the solutions \(f\in \mathcal{F}_{\theta}(\C)\) of the convolution equation \(T\star f=0\), called mean-periodic functions, where \(T\) is in the topological dual of \(\mathcal{F}_{\theta}(\C)\). We show that each mean-periodic function can be represented in an explicit way as a convergent series of exponential polynomials.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2008-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2080955755 |
source | Free E- Journals |
subjects | Convolution Entire functions Mathematical analysis Periodic functions Polynomials |
title | Representation of mean-periodic functions in series of exponential polynomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Representation%20of%20mean-periodic%20functions%20in%20series%20of%20exponential%20polynomials&rft.jtitle=arXiv.org&rft.au=Ouerdiane,%20H&rft.date=2008-03-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2080955755%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2080955755&rft_id=info:pmid/&rfr_iscdi=true |